Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Kẻ $AT$ vuông góc $MC$ \((T\in MC)\)
\(MC=\sqrt{MB^2+BC^2}=\sqrt{(\frac{a}{2})^2+a^2}=\frac{\sqrt{5}a}{2}\)
Khi đó:
\(\frac{AT}{AM}=\sin \angle AMT=\sin \angle BMC=\frac{BC}{MC}=\frac{a}{\frac{\sqrt{5}a}{2}}=\frac{2\sqrt{5}}{5}\)
\(\Leftrightarrow AT=\frac{2\sqrt{5}}{5}.AM=\frac{\sqrt{5}a}{5}\)
Xét tam giác vuông tại $A$ là $SAT$ :
\(ST=\sqrt{SA^2+AT^2}=\sqrt{a^2+\frac{a^2}{5}}=\frac{\sqrt{30}a}{5}\)
Ta thấy:
\(\left\{\begin{matrix} AT\perp MC\\ SA\perp MC\end{matrix}\right.\Rightarrow ST\perp MC\)
\(\Rightarrow d(S, MC)=ST=\frac{\sqrt{30}a}{5}\)
Vì $I$ là trung điểm của $SC$ nên:
\(d(I,MC)=\frac{1}{2}d(S,MC)=\frac{\sqrt{30}a}{10}\)
Đáp án A.
Đề bị lỗi công thức kìa bạn. Bạn xem và sửa lại đề dưới post.
1.
Gọi chóp S.ABCD với I là tâm đáy
\(V=\frac{1}{3}SI.S_{ABCD}=\frac{1}{3}SI.a^2=\frac{a^3\sqrt{6}}{6}\)
\(\Rightarrow SI=\frac{a\sqrt{6}}{2}\)
\(IA=\frac{1}{2}AC=\frac{a\sqrt{2}}{2}\Rightarrow SA=\sqrt{SI^2+IA^2}=a\sqrt{2}\)
2.
Đặt \(BC=x\)
Gọi H là hình chiếu của S lên đáy \(\Rightarrow\) H là trung điểm BC
\(\Rightarrow SH=\sqrt{SC^2-HC^2}=\sqrt{4a^2-\frac{x^2}{4}}\)
\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}a\sqrt{x^2-a^2}\)
\(\Rightarrow V=\frac{1}{6}a\sqrt{\left(x^2-a^2\right)\left(4a^2-\frac{x^2}{4}\right)}=\frac{1}{3}a\sqrt{\left(\frac{x^2}{4}-\frac{a^2}{4}\right)\left(4a^2-\frac{x^2}{4}\right)}\)
\(V\le\frac{a}{6}\left(\frac{x^2}{4}-\frac{a^2}{4}+4a^2-\frac{x^2}{4}\right)=\frac{5a^3}{8}\)
15.
ĐKXĐ: \(x^2+2x+1>0\Rightarrow x\ne-1\)
\(\Leftrightarrow log_2\left(x^2+2x+1\right)>log_22\)
\(\Leftrightarrow x^2+2x+1>2\)
\(\Leftrightarrow x^2+2x-1>0\Rightarrow\left[{}\begin{matrix}x< -1-\sqrt{2}\\x>-1+\sqrt{2}\end{matrix}\right.\)
16.
\(J=4\int\limits^2_0f\left(x\right)dx-\int\limits^2_02xdx=4.3-x^2|^2_0=8\)
17.
\(z=2+2i-6i-6i^2=8-4i\)
\(\Rightarrow\overline{z}=8+4i\)
11.
\(S=4\pi R^2\Rightarrow R=\sqrt{\frac{S}{4\pi}}=2\left(cm\right)\)
12.
\(log\left(10a^3\right)=log10+loga^3=1+3loga\)
13.
\(S=\pi R^2\Rightarrow R=\sqrt{\frac{S}{\pi}}\)
\(\Rightarrow S_{xq}=2\pi R.l=2\pi\sqrt{\frac{S}{\pi}}.l=2l.\sqrt{\pi S}\)
14.
\(\lim\limits_{x\rightarrow-1}\frac{x-2}{x+1}=-\infty\Rightarrow x=-1\) là tiệm cận đứng
14.
Pt mp (P) qua A và vuông góc d:
\(1\left(x-2\right)-2\left(y-3\right)+2\left(z+1\right)=0\)
\(\Leftrightarrow x-2y+2z+6=0\)
Pt d dạng tham số: \(\left\{{}\begin{matrix}x=4+t\\y=1-2t\\z=5+2t\end{matrix}\right.\)
Gọi M là giao điểm d và (P) thì tọa độ M thỏa mãn:
\(4+t-2\left(1-2t\right)+2\left(5+2t\right)+6=0\) \(\Rightarrow t=-2\) \(\Rightarrow M\left(2;5;1\right)\)
A' đối xứng A qua d \(\Rightarrow\)M là trung điểm AA'
Theo công thức trung điểm \(\Rightarrow A'\left(2;7;3\right)\)
15.
Pt d dạng tham số: \(\left\{{}\begin{matrix}x=-2+3t\\y=-2+2t\\z=-t\end{matrix}\right.\)
PT (P) qua A và vuông góc d:
\(3\left(x-4\right)+2\left(y+3\right)-1\left(z-2\right)=0\)
\(\Leftrightarrow3x+2y-z-4=0\)
H là giao điểm d và (P) nên tọa độ thỏa mãn:
\(3\left(-2+3t\right)+2\left(-2+2t\right)+t-4=0\Rightarrow t=1\)
\(\Rightarrow H\left(1;0;-1\right)\)
11.
Thay tọa độ 4 điểm vào pt d chỉ có đáp án A thỏa mãn
12.
Phương trình (P) qua A và vuông góc \(\Delta\):
\(1\left(x-0\right)+1\left(y-1\right)-1\left(z+1\right)=0\Leftrightarrow x+y-z-2=0\)
Gọi M là giao điểm d và (P) thì tọa độ M thỏa mãn:
\(1+t+2+t-\left(13-t\right)-2=0\Rightarrow t=4\) \(\Rightarrow M\left(5;6;9\right)\)
\(\Rightarrow\overrightarrow{AM}=\left(5;5;10\right)=5\left(1;1;2\right)\)
Phương trình tham số d: \(\left\{{}\begin{matrix}x=t\\y=1+t\\z=-1+2t\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=5+t\\y=6+t\\z=9+2t\end{matrix}\right.\)
13.
Pt tham số đường d qua A vuông góc (P): \(\left\{{}\begin{matrix}x=-t\\y=1-2t\\z=-2+2t\end{matrix}\right.\)
H là giao điểm (P) và d nên tọa độ thỏa mãn:
\(t-2\left(1-2t\right)+2\left(-2+2t\right)-3=0\Rightarrow t=1\)
\(\Rightarrow H\left(-1;-1;0\right)\)
Pt có 1 nghiệm thực nên \(z=1+i\) là nghiệm thì \(z=1-i\) cũng là nghiệm
Ta có: \(\left\{{}\begin{matrix}\left(1+i\right)+\left(1-i\right)=2\\\left(1+i\right)\left(1-i\right)=2\end{matrix}\right.\)
Do đó theo Viet biểu thức vế trái được phân tích thành
\(\left(z-2\right)\left(z^2-2z+2\right)=z^3-4z^2+6z-4\)
Đồng nhất với biểu thức ban đầu ta được: \(\left\{{}\begin{matrix}a=-4\\b=6\\c=-4\end{matrix}\right.\)
\(\Rightarrow a+b+c=-2\)
\(y'=\frac{\left(e^x+m\right)'}{e^x+m}=\frac{e^x}{e^x+m}\)
Thay \(x=-ln2=ln\frac{1}{2}\) vào với chú ý \(e^{lna}=a\) ta được:
\(\frac{e^{ln\frac{1}{2}}}{e^{ln\frac{1}{2}}+m}=\frac{3}{2}\Leftrightarrow\frac{\frac{1}{2}}{\frac{1}{2}+m}=\frac{3}{2}\Rightarrow m=-\frac{1}{6}\)
Đáp án A