K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

15 triệu đồng = 15000 nghìn đồng

Từ giả thiết bài toán ta có bất phương trình \(p\left( x \right) \ge 15000 \Leftrightarrow  - 30{x^2} + 2100x - 15000 \ge 15000\)

\( \Rightarrow  - 30{x^2} + 2100x - 30000 \ge 0\)

Xét tam thức \(f\left( x \right) =  - 30{x^2} + 2100x - 30000\) có \(\Delta  = 810000 > 0\), có hai nghiệm phân biệt là \({x_1} = 20,{x_2} = 50\) và \(a =  - 30 < 0\)

Ta có bảng xét dấu như sau

Nếu muốn lợi nhuận không dưới 15 triệu đồng một tháng thì giá bán trung bình của các món ăn cần nằm trong khoảng 20 đến 50 nghìn đồng.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Để cửa hàng có lãi thì lợi nhuận lớn hơn 0, suy ra \(I > 0 \Leftrightarrow  - 3{x^2} + 200x - 2325 > 0\)

Tam thức \(I =  - 3{x^2} + 200x - 2325\) có \(\Delta  = 12100 > 0\), có hai nghiệm phân biệt \({x_1} = 15;{x_2} = \frac{{155}}{3}\) và có \(a =  - 3 < 0\)

Ta có bảng xét dấu như sau:

 

Vậy ta thấy cửa hàng có lợi nhuận khi \(x \in \left( {15;\frac{{155}}{3}} \right)\) (kg)

Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 (triệu đồng) và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh...
Đọc tiếp

Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua vào một chiếc là 27 (triệu đồng) và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất.

A. 30 triệu đồng.

B. 29 triệu đồng.

C. 30,5 triệu đồng.

D. 29,5 triệu đồng

1
5 tháng 5 2017

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Thay x=100 ta được:

\(y =  - {200.100^2} + 92000.100 - 8400000\)

\( =  - 1200000\)

Thay x=200 ta được:

\(\begin{array}{l}y =  - {200.200^2} + 92000.200 - 8400000\\ = 2000000\end{array}\)

Vậy với \(x = 100\) thì \(y =  - 1200000\)

Với \(x = 200\) thì \(y = 2000000\)

b) Với mỗi giá trị của x có 1 giá trị tương ứng của y.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Xét dấu tam thức bậc hai tức là kiểm tra về dấu của tam thức bậc hai theo từng (khoảng) giá trị của ẩn.

Ta có \(a =  - 200 < 0,b = 92 000, c = 8400 000\)

\(\Delta ' = {(92000:2)}^2 - \left( { - 200} \right). 8400 000 = 436000000 > 0\)

\( \Rightarrow \)\(f\left( x \right)\) có 2 nghiệm \(x = 230 \pm 10\sqrt 109\). Khi đó:

\(f\left( x \right) < 0\) với mọi x thuộc các khoảng \(\left( { - \infty ; 230 - 10\sqrt 109} \right)\) và \(\left( {230 + 10\sqrt 109; + \infty } \right)\);

\(f\left( x \right) > 0\) với mọi x thuộc các khoảng \(\left( {230-10\sqrt 109; 230 + 10\sqrt 109} \right)\)

Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi chiếc lần lượt là 10 triệu đồng và 20 triệu đồng với số vốn ban đầu không vượt quá 4 tỉ đồng. Loại máy A mang lại lợi nhuận 2,5 triệu đồng cho mỗi máy bán được và loại máy B mang lại lợi nhuận là 4 triệu đồng mỗi máy. Cửa hàng ước tính rằng tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy. Giả sử trong...
Đọc tiếp

Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi chiếc lần lượt là 10 triệu đồng và 20 triệu đồng với số vốn ban đầu không vượt quá 4 tỉ đồng. Loại máy A mang lại lợi nhuận 2,5 triệu đồng cho mỗi máy bán được và loại máy B mang lại lợi nhuận là 4 triệu đồng mỗi máy. Cửa hàng ước tính rằng tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy. Giả sử trong một tháng cửa hàng cần nhập số máy tính loại A là x và số máy tính loại B là y.

a) Viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương trình rồi xác định miền nghiệm của hệ đó.

b) Gọi F (triệu đồng) là lợi nhuận mà cửa hàng thu được trong tháng đó khi bán x máy tính loại A và y máy tính loại B. Hãy biểu diễn F theo x và y.

c) Tìm số lượng máy tính mỗi loại cửa hàng cần nhập về trong tháng đó đề lợi nhuận thu được là lớn nhất.

2
24 tháng 9 2023

Tham khảo:

 

a)

Bước 1: Ta có:

 

Loại A

Loại B

Giá mua vào

10 triệu đồng/1 máy

20 triệu đồng/1 máy

Lợi nhuận

2,5 triệu đồng/1 máy

4 triệu đồng/1 máy

Bước 2: Lập hệ bất phương trình

Vì số lượng máy là số tự nhiên nên ta có \(x \ge 0;y \ge 0\)

Vốn nhập vào x máy loại A và y máy loại B là \(10x + 20y\)(triệu đồng)

4 tỉ đồng=4000 (triệu đồng)

Vì số vốn ban đầu không vượt quá 4 tỉ đồng nên ta có bất phương trình

\(10x + 20y \le 4000\) \( \Leftrightarrow x + 2y \le 400\)

Vì tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy nên ta có \(x + y \le 250\).

Vậy ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + 2y \le 400\\x + y \le 250\end{array} \right.\)

Bước 3: Xác định miền nghiệm

Miền nghiệm là tứ giác OABC với tọa độ các đỉnh này là O(0;0), A(250;0), B(100;150), C(0;200)

b) Lợi nhuận hàng tháng là F(x;y)=2,5x+4y(triệu đồng)

c) Ta cần tìm giá trị lớn nhất của F(x;y) khi (x;y) thỏa mãn hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + 2y \le 400\\x + y \le 250\end{array} \right.\)

Ta có F(0;0)=0, F(250;0)=2,5.250+4.0=625

F(100;150)=2,5.100+4.150=850

F(0;200)=2,5.0+4.200=800

Giá trị lớn nhất là F(100;150)=850.

Vậy cửa hàng cần đầu tư kinh doanh 100 máy A và 150 máy B.

24 tháng 9 2023

a) Số máy tính loại A cửa hàng cần nhập trong một tháng là x (máy), số máy tính loại B cửa hàng cần nhập trong một tháng là y (máy) (x,y≥0).

Do tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy: x + y ≤ 250

Tổng số vốn cửa hàng cần nhập hai loại A và B: 10x + 20y (triệu đồng)

Vì mỗi chiếc máy tính loại A có giá 10 triệu và mỗi máy tính loại B có giá 20 triệu nên tổng số vốn cửa hàng cần nhập hai loại A và B: 10x + 20y (triệu đồng)

Vì số vốn ban đầu không vượt quá 4 tỉ đồng nên ta có: 10x + 20y ≤ 4 000 hay x + 2y ≤ 400.

Ta có hệ bất phương trình: \(\left\{{}\begin{matrix}x\ge0\\y\ge0\\x+y\le250\\x+2y\le400\end{matrix}\right.\)

Ta xác định miền nghiệm của hệ bất phương trình trên:

+) Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (1;0).

+) Miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox chứa điểm (0;1).

+) Xác định miền nghiệm D3 của bất phương trình x + y ≤ 250.

- Vẽ đường thẳng d: x + y = 250.

- Vì 0 + 0 = 0 < 250 nên tọa độ điểm O(0;0) thỏa mãn bất phương trình x + y ≤ 250

Do đó miền nghiệm D3 của bất phương trình x + y ≤ 250 là nửa mặt phẳng bờ d chứa gốc tọa độ.

+) Xác định miền nghiệm D4 của bất phương trình x + 2y ≤ 400.

- Vẽ đường thẳng d’: x + 2y  = 400.

- Vì 0 + 2.0 = 0 < 400 nên tọa độ điểm O(0;0) thỏa mãn bất phương trình x + 2y < 400

Do đó miền nghiệm D4 của bất phương trình x + 2y < 400 là nửa mặt phẳng bờ d’ chứa gốc tọa độ.

Miền nghiệm của hệ bất phương trình trên là tứ giác OABC với O(0;0), A(0; 200), C(100;150), B(250;0)

Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi chiếc lần lượt (ảnh 1)

b) Lợi nhuận mà cửa hàng thu được trong tháng đó khi bán x máy tính loại A và y máy tính loại B là: F(x;y) = 2,5x + 4y (triệu đồng).

Vậy F(x;y) = 2,5x + 4y.

c) Bài toán chuyển về tìm giá trị lớn nhất của F(x;y) với (x;y) thuộc miền nghiệm của hệ bất phương trình \(\left\{{}\begin{matrix}x\ge0\\y\ge0\\x+y\le250\\x+2y\le400\end{matrix}\right.\)

Người ta đã chứng minh được, giá trị F(x; y) lớn nhất tại (x; y) là tọa độ của một trong bốn đỉnh O; A; B; C.

Tại O(0; 0), ta có: F(0; 0) = 2,5 . 0 + 4 . 0 = 0;

Tại A(0; 200), ta có: F(0; 200) = 2,5 . 0 + 4 . 200 = 800;

Tại B(100; 150), ta có: F(100; 150) = 2,5 . 100 + 4 . 150 = 850;

Tại B(250; 0), ta có: F(250; 0) = 2,5 . 250 + 4 . 0 = 625.

Do đó F(x;y) lớn nhất bằng 850 tại x = 100 và y = 150.

Vậy cửa hàng cần nhập 100 máy loại A, 150 máy loại B để cửa hàng thu được lợi nhuận lớn nhất là 850 triệu đồng.

21 tháng 6 2019

Bảng số liệu có 7 giá trị, sắp các giá trị theo thứ tự không giảm ta có:

650, 670, 690, 720, 840, 2500, 3000.

Vì số phần tử = 7 là số lẻ nên số trung vị là Me = 720 (số chính giữa của dãy).

Ý nghĩa:

Giải bài tập Toán lớp 10

Số trung bình này chênh lệch quá lớn so với các số liệu nên không đại diện được cho các số liệu.

Trong trường hợp này, số trung vị nên được chọn làm giá trị đại diện cho mức lương.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Thu nhập trung bình của thành viên trong công ty là

\(\bar X = \frac{{20.1 + 4.5}}{6} = \frac{{40}}{6} \approx 6,67\)

Vậy thu nhập trung bình của các thành viên là 6,67 triệu đồng.

b) Ta thấy rõ ràng thu nhập của giám đốc cao hơn thu nhập trung bình rất nhiều (khoảng 13,3 triệu), còn thu nhập của mỗi nhân viên thì gần với thu nhập trung bình hơn (khoảng 2,67 triệu). Như thế, thu nhập trung bình không phản ánh đúng thu nhập của nhân viên công ty.

Chú ý

Công ty có 6 người thì cần tính thu nhập trung bình của 6 người.