K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2016

Giải bằng Tiếng Việt thím nhá =))

Giả sử cả 5 số a; b; c; d; e đều lẻ

=> a2; b2; c2; d2; e2 cũng đều lẻ

Ta đã biết số chính phương chia cho 8 chỉ có thể dư 0; 1 hoặc 4 nếu số chính phương đó thuộc N

Mà a2; b2; c2; d2; e2 lẻ nên cả 5 số này đều chia 8 dư 1

=> g2 = a2 + b2 + c2 + d2 + e2 chia 8 dư 5, không là số chính phương

Do đó, trong 5 số a; b; c; d; e; g tồn tại ít nhất 1 số chẵn

=> abcdeg chia hết cho 2 (đpcm)

8 tháng 11 2016

Đúng y như cách giải của t luôn :) 

11 tháng 2 2022

anh làm mẫu 2 câu còn lại em tự làm cho quen nhé, mấy cái hpt như này thì em dùng phương pháp cộng đại số là tối ưu nhất 

a, \(\hept{\begin{cases}2x+y=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=6\\y=x-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)

b, \(\hept{\begin{cases}2x-3y=3\\2x+5y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}8y=2\\x=\frac{3+3y}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{4}\\x=\frac{15}{8}\end{cases}}}\)

31 tháng 12 2018

trừ cho nhau là xong

1 tháng 2 2019

Nói nghe có vẻ dễ ha Trần Hữu Ngọc Minh 

Trả lời :

Vì \(\frac{x}{a}+\frac{y}{b}=\frac{z}{c}=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1^2\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2}=1\left(dpcm\right)\)

Study ưell

Không chắc 

6 tháng 8 2019

cj mai>>>>

4 tháng 11 2018

a+b+c=1 => (a+b+c)2=1

=>a2+b2+c2+2(ab+bc+ca)=1

=>1+2(ab+bc+ca)=1

=>ab+bc+ca=0

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak,y=bk,z=ck\)

\(A=xy+yz+zx=akbk+bkck+ckak=k^2\left(ab+bc+ca\right)=0\)