Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.
a)
2x-4=2(x-2)
2x+4=2(x+2)
x
Để P xác định thì
[2(x-2) => [2(x+2)
[2(x+2) =>[ 2(x-2)
[ (x-2)(x+2) => [(x+2)(x-2)
Vay 2(x+2) , 2(x-2), (x+2)(x-2) thi P xác định
\(a,ĐKXĐ:x\ne\pm2\)
\(b,P=\left(\frac{x+2}{2x-4}+\frac{x-2}{2x+4}+\frac{-8}{x^2-4}\right):\frac{4}{x-2}\)
\(=\left(\frac{x+2}{2\left(x-2\right)}+\frac{x-2}{2\left(x+2\right)}+\frac{-8}{\left(x-2\right)\left(x+2\right)}\right).\frac{x-2}{4}\)
\(=\left(\frac{\left(x+2\right)\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)}+\frac{\left(-8\right).2}{2\left(x-2\right)\left(x+2\right)}\right)\)\(.\frac{x-2}{4}\)
\(=\left(\frac{x^2+4x+4+x^2-4x+4-16}{2\left(x-2\right)\left(x+2\right)}\right).\frac{x-2}{4}\)
\(=\frac{2x^2-8}{2\left(x-2\right)\left(x+2\right)}.\frac{x-2}{4}\)
\(=\frac{2\left(x-2\right)\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}.\frac{x-2}{4}=1.\frac{x-2}{4}=\frac{x-2}{4}\)