Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: \(\left(2x^2-5x+2\right)\left(x^3+1\right)< >0\)
=>(2x-1)(x-2)(x+1)<>0
hay \(x\notin\left\{\dfrac{1}{2};2;-1\right\}\)
b: ĐKXĐ: x+5<>0
=>x<>-5
c: ĐKXĐ: x4-1<>0
hay \(x\notin\left\{1;-1\right\}\)
d: ĐKXĐ: \(x^4+2x^2-3< >0\)
=>\(x\notin\left\{1;-1\right\}\)
a: ĐKXĐ: (x-2)(x+1)<>0 và x+1<>0
=>\(x< >-1\)
b: ĐKXĐ: \(\left\{{}\begin{matrix}\dfrac{x}{1-x}>=0\\2x-1>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0< =x< 1\\x>=\dfrac{1}{2}\end{matrix}\right.\)
c: ĐKXĐ: 5-2x>=0 và 3-x(x+2)<>0
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{5}{2}\\x^2+2x-3< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{5}{2}\\x\notin\left\{-3;1\right\}\end{matrix}\right.\)
a/ \(M=\left[\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}-\left(\sqrt{x}+2\right)\right].\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)
\(=\dfrac{-2\sqrt{x}}{\sqrt{x}-1}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}=\sqrt{x}-x\)
b/ Chứng minh
\(\sqrt{x}-x\le\dfrac{1}{4}\)
\(\Leftrightarrow4x-4\sqrt{x}+1\ge0\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)^2\ge0\) (đúng)
Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0
=> C ≥ 0
Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7
C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4
Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5
\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)
Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)
a: ĐKXĐ: x-1>0 và x+2<>0
=>x>1
b: DKXĐ: (x-2)căn x-1<>0
=>x-1>0 và x-2<>0
=>x>1 và x<>2
c: ĐKXĐ: 2x-1>=0 và 3-x>0
=>x>=1/2 và x<3
d: ĐKXĐ: x-1>0 và x-2<>0
=>x>1 và x<>2
e: ĐKXĐ: x3+1>=0
=>x>=-1
\(p=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)
\(\Leftrightarrow p=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(1-x\right)^2}{2}\)
\(\Leftrightarrow p=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(1-x\right)^2}{2}\)
\(\Leftrightarrow p=\left(\dfrac{\left(-2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(\Leftrightarrow p=-\sqrt{x}\left(\sqrt{x}-1\right)\)
\(\dfrac{\left(1-x\right)^2}{2}\) bạn chuyển như thê nao