Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) DK : x > 0; x khác 1
\(P=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=x-\sqrt{x}+1\)
c ) \(Q=\frac{2\sqrt{x}}{P}=\frac{2\sqrt{x}}{x-\sqrt{x}+1}\)
<=> \(xQ-\left(Q+2\right)\sqrt{x}+Q=0\)(1)
TH1: Q = 0 => x = 0 loại
TH2: Q khác 0
(1) là phương trình bậc 2 với tham số Q ẩn x.
(1) có nghiệm <=> \(\left(Q+2\right)^2-4Q^2\ge0\)
<=> \(-3Q^2+4Q+4\ge0\)
<=> \(-\frac{2}{3}\le Q\le2\)
Vì Q nguyên và khác 0 nên Q = 1 hoặc Q = 2
Với Q = 1 => \(x-3\sqrt{x}+1=0\)
<=> \(\sqrt{x}=\frac{3}{2}\pm\frac{\sqrt{5}}{2}\)----> Tìm được x
Với Q = 2 => \(2x-4\sqrt{x}+1=0\Leftrightarrow\sqrt{x}=1\pm\frac{1}{\sqrt{2}}\)-----> tìm đc x.
Tự làm tiếp nhé! Kiểm tra lại đề bài câu b.
Bài 1:
\(A=\sqrt{8}-2\sqrt{2}+\sqrt{20}-2\sqrt{5}-2=2\sqrt{2}-2\sqrt{2}+2\sqrt{5}-2\sqrt{5}-2=-2\)\(B=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(A=\frac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}×\frac{x+\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\frac{1}{\sqrt{x}+2}\)
A đạt GTLN khi \(2+\sqrt{x}\)đạt GTNN hay x là nhỏ nhất. Vậy A đạt GTLN là \(\frac{1}{2}\)khi x = 0
a) Ta có: \(P=\left(\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{\sqrt{a}}{a-1}\right):\left(\frac{2}{a}-\frac{2-a}{a\sqrt{a}+a}\right)\)
\(=\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right):\left(\frac{2\left(\sqrt{a}+1\right)}{a\left(\sqrt{a}+1\right)}-\frac{2-a}{a\left(\sqrt{a}+1\right)}\right)\)
\(=\frac{a+\sqrt{a}+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}:\frac{2\sqrt{a}+2-2+a}{a\left(\sqrt{a}+1\right)}\)
\(=\frac{a+2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot\frac{a\left(\sqrt{a}+1\right)}{a+2\sqrt{a}}\)
\(=\frac{a}{\sqrt{a}-1}\)
b)
ĐKXĐ: \(a\notin\left\{1;0\right\}\)
Để P-2 là số dương thì P-2>0
⇔\(\frac{a}{\sqrt{a}-1}-2>0\)
\(\Leftrightarrow\frac{a}{\sqrt{a}-1}-\frac{2\left(\sqrt{a}-1\right)}{\sqrt{a}-1}>0\)
\(\Leftrightarrow\frac{a-2\sqrt{a}+2}{\sqrt{a}-1}>0\)
mà \(a-2\sqrt{a}+2=\left(\sqrt{a}-1\right)^2+1>0\forall a\)
nên \(\sqrt{a}-1>0\)
\(\Leftrightarrow\sqrt{a}>1\)
\(\Leftrightarrow a>1\)(tm)
Vậy: Khi a>1 thì P-2 là số dương
A=\((\frac{\sqrt{a}\left(\sqrt{a}+1\right)+\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}):\left(\frac{2\left(\sqrt{a}+1\right)-\left(2-a\right)}{a\left(\sqrt{a}+1\right)}\right)\)
\(A=\left(\frac{a+\sqrt{a}+\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right):\left(\frac{2\sqrt{a}+2-2+a}{a\left(\sqrt{a}+1\right)}\right)\)
\(A=\frac{a+2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\frac{a\left(\sqrt{a}+1\right)}{2\sqrt{a}-a}\)
\(A=\frac{a}{\sqrt{a}-1}\)
Lời giải:
a)
$P=\left[2+\frac{\sqrt{a}(\sqrt{a}+1)}{\sqrt{a}+1}\right]\left[2-\frac{\sqrt{a}(\sqrt{a}-1)}{\sqrt{a}-1}\right]$
$=(2+\sqrt{a})(2-\sqrt{a})=4-a$
b)
Với mọi $a\geq 0; a\neq 1$ thì $P=4-a\leq 4-0$ hay $P\leq 4$
Vậy GTLN của $P$ là $4$ khi $a=0$