Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt S OBC=S1, S OAC=S2, S OAB=S3, S=S ABC
Kẻ AH vuông góc BC< OK vuông góc BC
=>OK//AH
OP/AP=OK/AH=1/2*OK*BC/1/2*AH*CB=S1/S
=>\(\dfrac{AP-OP}{AP}=\dfrac{S-S_1}{S}\)
=>\(\dfrac{OA}{AP}=\dfrac{S_2+S_3}{S}\)
Cmtương tự, ta được: \(\dfrac{OB}{BQ}=\dfrac{S_1+S_3}{S};\dfrac{OC}{CR}=\dfrac{S_1+S_2}{S}\)
=>\(\dfrac{OA}{AP}+\dfrac{OB}{BQ}+\dfrac{OC}{CR}=2\)
A B C H A' O C' B'
kẻ đường cao AH có: \(\frac{OA'}{AA'}=\frac{S_{BOC}}{S_{ABC}}\), ta có:
\(\frac{OB'}{BB'}=\frac{S_{AOC}}{S_{ABC}}\)
\(\frac{OC'}{CC'}=\frac{S_{AOB}}{S_{ABC}}\)
\(\Rightarrow\frac{OA'}{AA'}+\frac{OB'}{BB'}+\frac{OC'}{CC'}=\frac{S_{BOC}+S_{AOC}+S_{AOB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\) (đpcm)
Nguồn: HiệU NguyễN
b) C/m: \(\Delta ABC\sim\Delta DAC\left(g.g\right)\Rightarrow AC^2=DC.BC\left(1\right)\)
\(\Delta ABC\sim\Delta DBA\left(g.g\right)\Rightarrow AB^2=BD.BC\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\frac{AC^2}{AB^2}=\frac{DC.BC}{BD.BC}=\frac{DC}{BD}\Rightarrow\frac{AC^4}{AB^4}=\frac{DC^2}{BD^2}\left(5\right)\)
C/m: \(\Delta DAC\sim\Delta EDC\left(g.g\right)\Rightarrow DC^2=CE.AC\left(3\right)\)
\(\Delta DBA\sim\Delta FBD\left(g.g\right)\Rightarrow BD^2=BF.AB\left(4\right)\)
\(\left(3\right)\left(4\right)\Rightarrow\frac{DC^2}{BD^2}=\frac{CE.AC}{BF.AB}\left(6\right)\)
\(\left(5\right)\left(6\right)\Rightarrow\frac{AC^4}{AB^4}=\frac{CE.AC}{BF.AB}\Rightarrow\frac{AC^3}{AB^3}=\frac{CE}{BF}\Rightarrowđpcm\)
2:
a: HM là đường trung bình của ΔEBC
=>EH=HB
KM là đường trug bình của ΔFBC
=>FK=KC
ΔAHM có EO//HM
=>AE/AH=AO/AM
ΔAKM có KM//FO
nên AF/AK=AO/AM
=>AE/AH=AF/AK
=>EF//HK
b: ΔAHM có EO//HM
=>MA/MO=HA/HE
=>MA/MO=HA/HB
ΔAKM có FO//KM
=>MA/MO=KA/KF=KA/KC
=>HA/HB=KA/KC
=>HK//BC
=>EF//BC