K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

a) Bảng biến thiên:

Đồ thị: - Đỉnh:

- Trục đối xứng:

- Giao điểm với trục tung A(0; 1)

- Giao điểm với trục hoành , C(1; 0).

(hình dưới).

b) y = - 3x2 + 2x – 1=

Bảng biến thiên:

Vẽ đồ thị: - Đỉnh Trục đối xứng: .

- Giao điểm với trục tung A(0;- 1).

- Giao điểm với trục hoành: không có.

Ta xác định thêm mấy điểm: B(1;- 2), C(1;- 6). (bạn tự vẽ).

c) y = 4x2 - 4x + 1 = .

Lập bảng biến thiên và vẽ tương tự câu a, b.

d) y = - x2 + 4x – 4 = - (x – 2)2

Bảng biến thiên:

Cách vẽ đồ thị:

Ngoài cách vẽ như câu a, b, ta có thể vẽ như sau:

+ Vẽ đồ thị (P) của hàm số y = - x2.

+ Tịnh tiến (P) song song với Ox sang phải 2 đơn vị được (P1) là đồ thị cần vẽ. (hình dưới).

e) y = 2x2+ x + 1;

- Đỉnh I \(\left(\dfrac{-1}{4};\dfrac{-7}{8}\right)\)

- Trục đối xứng :\(x=\dfrac{-1}{4}\)

- Giao Ox: Đồ thị không giao với trục hoành

- Giao Oy: Giao với trục tung tại điểm (0;1)

Bảng biến thiên:

Vẽ đồ thị theo bảng sau:

x -2 -1 0 1 2
y 7 2 1 4 11

f) y = - x2 + x - 1.

- Đỉnh I \(\left(\dfrac{1}{2};\dfrac{-3}{4}\right)\)

- Trục đối xứng : \(x=\dfrac{1}{2}\)

- Giao Ox: Đồ thị không giao với trục hoành

- Giao Oy: Giao với trục tung tại điểm (0;-1)

Bảng biến thiên:

Vẽ đồ thị theo bảng sau:

x -2 -1 0 1 2
y -7 -3 -1 -1 -3



17 tháng 5 2017

Hàm số bậc hai

Hàm số bậc hai

Hàm số bậc hai

Hàm số bậc hai

Hàm số bậc hai

13 tháng 4 2017

a) Tập xác định D = R

Bảng biến thiên

Đồ thị hàm số

Đồ thị: parabol có đỉnh I(1, -2) với trục đối xứng x = 1

Giao điểm với trục tung là P(0,-1)

Giao điểm với trục hoành A (1-√2, 0) và B((1+√2, 0)

b)

Tập xác định D = R

Đồ thị hàm số

Đồ thị: parabol có đỉnh I \(\left(\dfrac{3}{2},\dfrac{17}{4}\right)\)với trục đối xứng \(x=\dfrac{3}{2}\)

Giao điểm với trục tung là P(0,2)

Giao điểm với trục hoành A \(\left(\dfrac{3-\sqrt{17}}{2},0\right)\) và B\(\left(\dfrac{3+\sqrt{17}}{2},0\right)\)



27 tháng 4 2022

Y=2x²-3x+1

28 tháng 4 2017

a) TXĐ: \(D=R\).
b) \(TXD=D=R\backslash\left\{4\right\}\)
c) Đkxđ: \(\left\{{}\begin{matrix}4x+1\ge0\\-2x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{4}\\x\le\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-1}{4}\le x\le\dfrac{1}{2}\).
TXĐ: D = \(\left[\dfrac{-1}{4};\dfrac{1}{2}\right]\)

3 tháng 5 2017

a) Đkxđ: \(\left\{{}\begin{matrix}x+9\ge0\\x^2+8x-20\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\\left\{{}\begin{matrix}x\ne2\\x\ne-10\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\x\ne2\end{matrix}\right.\)
Txđ: D = [ - 9; 2) \(\cup\) \(\left(2;+\infty\right)\)
b) Đkxđ: \(\left\{{}\begin{matrix}2x+1\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{2}\\x\ne3\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{\dfrac{-1}{2};3\right\}\)
c) \(x^2+2x-5\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne-1+\sqrt{6}\\x\ne-1-\sqrt{6}\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{-1+\sqrt{6};-1-\sqrt{6}\right\}\)


1: Phương trình hoành độ giao điểm là

\(x^2-2x-1=x-1\)

=>x(x-3)=0

=>x=0 hoặc x=3

Khi x=0 thì y=-1

Khi x=3 thì y=2

2: Phương trình hoành độ giao điểm là:

\(-x+3=-x^2-4x+1\)

\(\Leftrightarrow x^2+3x+2=0\)

=>x=-1 hoặc x=-2

Khi x=-1 thì y=1+3=4

Khi x=-2 thì y=2+3=5

3: Phương trình hoành độ giao điểm là:

\(x^2-4x+4=2x-5\)

\(\Leftrightarrow x=3\)

=>y=1