Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = (x3 - 8) - (x2 - 4) = (x - 2).(x2 + 2x + 4) - (x - 2)(x+2) = (x - 2).(x2 + 2x + 4 - x - 2) = (x - 2).(x2 + x + 2)
b) = (x7 - x) + (x2 + x+ 1) = x(x6 - 1) + (x2 + x+ 1) = x(x3 - 1)(x3+ 1) + (x2 + x+ 1) = x(x3 + 1).(x - 1).(x2 + x+ 1) + (x2 + x+ 1)
= (x2 + x+ 1) .[(x3 + 1).(x2 - x) + 1] = (x2 + x+ 1) .(x5 - x4 + x2 - x + 1)
c) = (x3 + 3x2) + (3x2 + 9x) + (2x + 6)
= x2.(x + 3) + 3x.(x + 3) + 2(x + 3)
= (x2 + 3x+2)(x+3) = (x2 + 2x + x+ 2)(x+3) = (x+1)(x+2)(x+3)
i)
$I=x^4+4x^3-x^2-14x+6$
$=(x^4+4x^4+4x^2)-5x^2-14x+6$
$=(x^2+2x)^2-6(x^2+2x)+9+x^2-2x-3$
$=(x^2+2x-3)^2+(x^2-2x+1)-4$
$=(x-1)^2(x+3)^2+(x-1)^2-4$
$=(x-1)^2[(x+3)^2+1]-4\geq -4$
Vậy $I_{\min}=-4$ khi $(x-1)^2[(x+3)^2+1]=0\Leftrightarrow x=1$
k)
$K=x^4+2x^3-10x^2-16x+45$
$=(x^4+2x^3+x^2)-11x^2-16x+45$
$=(x^2+x)^2-12(x^2+x)+x^2-4x+45$
$=(x^2+x)^2-12(x^2+x)+36+(x^2-4x+4)+5$
$=(x^2+x-6)^2+(x-2)^2+5$
$=[(x-2)(x+3)]^2+(x-2)^2+5$
$=(x-2)^2[(x+3)^2+1]+5\geq 5$
Vậy $K_{\min}=5$ khi $(x-2)^2[(x+3)^2+1]=0\Leftrightarrow x=2$
g)
$G=x^4+4x^3+10x^2+12x+11$
$=(x^4+4x^3+4x^2)+6x^2+12x+11$
$=(x^2+2x)^2+6(x^2+2x)+11$
Đặt $x^2+2x=t$. Khi đó $t=x^2+2x=(x+1)^2-1\geq -1\Rightarrow t+1\geq 0$
$\Rightarrow G=t^2+6t+11=(t+1)^2+4(t+1)+7\geq 7$
Vậy $G_{\min}=7$ khi $t=-1\Leftrightarrow (x+1)^2=0\Leftrightarrow x=-1$
h)
$H=x^4-6x^3+x^2+24x+18$
$=(x^4-6x^3+9x^2)-8x^2+24x+18$
$=(x^2-3x)^2-8(x^2-3x)+18$
$=(x^2-3x)^2-8(x^2-3x)+16+2$
$=(x^2-3x-4)^2+2\geq 2$
Vậy $H_{\min}=2$ khi $x^2-3x-4=0\Leftrightarrow x=4$ hoặc $x=-1$
a) = 4x2 + 10x + 35 (dư 104)
b) = 3x3 - 7x2 + 14x - 24 (dư 47)
c) = 12x3 + 22x2 + 44x + 73 (dư 156)
Mik chỉ viết đáp án thui nha
~ Học tốt ~
x^4 - 6x^3 + 12x^2 - 14x + 3 x^2 - 4x + 1 x^2 - 2x + 3 x^4 - 4x^3 + x^2 -2x^3 +11x^2 - 14x + 3 -2x^3 + 8x^2 - 2x - 3x^2 - 12x + 3 3x^2 - 12x + 3 0