Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3+2x^2-x=5x\left(2-x\right)-11\left(x+2\right)\)
=>-x^2+2x-1=10x-5x^2-11x-22
=>-x^2+2x-1=-5x^2-x-22
=>4x^2+3x+21=0
=>PTVN
b: \(\Leftrightarrow\left(x+10\right)\left(x+4\right)+3\left(x+4\right)\left(x-2\right)=4\left(x+10\right)\left(x-2\right)\)
=>x^2+14x+40+3(x^2+2x-8)=4(x^2+8x-20)
=>x^2+14x+40+3x^2+6x-24=4x^2+32x-80
=>20x+16=32x-80
=>-12x=-96
=>x=8
c: \(\Leftrightarrow6\left(x-3\right)+7\left(x-5\right)=13x+4\)
=>6x-18+7x-35=13x+4
=>-53=4(loại)
d: =>3(2x-1)-5(x-2)=3(x+7)
=>6x-3-5x+10=3x+21
=>3x+21=x+7
=>x=-7
e: =>x^3-6x^2+12x-8-x^3-3x^2-3x-1=-9x^2+1
=>-9x^2+9x-9=-9x^2+1
=>9x=10
=>x=10/9
1: \(=\dfrac{\left(x^2+2xy+y^2\right)-1}{\left(x^2+2x+1\right)-y^2}\)
\(=\dfrac{\left(x+y+1\right)\left(x+y-1\right)}{\left(x+1-y\right)\left(x+1+y\right)}=\dfrac{x+y-1}{x-y+1}\)
2: \(=\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}\)
\(=\dfrac{\left(x-y\right)\left(x^2+y^2\right)}{x^2-xy+y^2}\)
3: \(=\dfrac{\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz}{2x^2+2y^2+2z^2-2xy-2yz-2xz}\)
\(=\dfrac{\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)}{2\left(x^2+y^2+z^2-xy-yz-xz\right)}\)
\(=\dfrac{x+y+z}{2}\)
a) \(A=\left[\dfrac{x+3}{\left(x-3\right)^2}+\dfrac{6}{x^2-9}-\dfrac{x-3}{\left(x+3\right)^2}\right]\left[1:\left(\dfrac{24x^2}{x^4-81}-\dfrac{12}{x^2+9}\right)\right]\)
\(\left(ĐKXĐ:x\ne\pm3\right)\)
\(=\dfrac{\left(x+3\right)^3+6\left(x-3\right)\left(x+3\right)-\left(x-3\right)^3}{\left(x-3\right)^2\left(x+3\right)^2}\cdot\left[1:\dfrac{24x^2-12\left(x^2-9\right)}{\left(x^2-9\right)\left(x^2+9\right)}\right]\)
\(=\dfrac{x^3+9x^2+27x+27+6x^2-54-x^3+9x^2-27x+27}{\left(x-3\right)^2\left(x+3\right)^2}\cdot\dfrac{\left(x^2-9\right)\left(x^2+9\right)}{24x^2-12x^2+108}\)
\(=\dfrac{24x^2\left(x^2+9\right)\left(x-3\right)\left(x+3\right)}{12\left(x^2+9\right)\left(x-3\right)^2\left(x+3\right)^2}\)
\(=\dfrac{2x^2}{x^2-9}\)
b) \(B=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left[\left(x-2\right)+\dfrac{10-x^2}{x+2}\right]\)
\(=\left(\dfrac{x}{x^2-4}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\left(\dfrac{x-2}{1}+\dfrac{10-x^2}{x+2}\right)\)
\(=\dfrac{x-2\left(x+2\right)+x-2}{\left(x-2\right)\left(x+2\right)}:\dfrac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\)
\(=\dfrac{x-2x-4+x-2}{x^2-4}\cdot\dfrac{x+2}{x^2-4+10-x^2}\)
\(=\dfrac{-6\left(x+2\right)}{6\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{-1}{x-2}\)
phần b điều kiện xác định là \(x\ne\pm2\) nhé
Bài 45: (SBT/12):
a. (5x4 - 3x3 + x2) : 3x2
= (5x4 : 3x2) + (-3x3 : 3x2) + (x2 : 3x2)
=\(\dfrac{5}{2}\)x2 - x + \(\dfrac{1}{3}\)
b. (5xy2 + 9xy - x2y2) : (-xy)
= [5xy2 : (-xy)] + [9xy : (-xy)] + [(-x2y2) : (-xy)]
= -5y - 9 + xy
c. (x3y3 : \(\dfrac{1}{3}\)x2y3 - x3y2) : \(\dfrac{1}{3}\)x2y2
= (x3y3 : \(\dfrac{1}{3}\)x2y2) + (-\(\dfrac{1}{2}\)x2y3 : \(\dfrac{1}{3}\)x2y2) + (-x3y2 : \(\dfrac{1}{3}\)x2y2)
= 3xy - \(\dfrac{3}{2}\)y - 3x
a) 1/x(x + 1) + 1/(x + 1)(x + 2) + 1/(x + 2)(x + 3) + 1/(x + 3)(x + 4)
( 1/x - 1/x+1) + (1/x+1 - 1/x+2) + (1/x+2 - 1/ x+3) + 1/(x+3 - 1/x+4)
(1/x +1/x+4) - ( 1/x+2 - 1/x+2) - ( 1/x+3 - 1/x+3)
1/x +1/x+4
2x+4/x(x+4)
2.a)
\(2x\left(6x-1\right)>\left(3x-2\right)\left(4x+3\right)\)
\(\Leftrightarrow12x^2-2x>12x^2+9x-8x-6\)
\(\Leftrightarrow12x^2-2x-12x^2-9x+8x>6\)
\(\Leftrightarrow-3x>6\)
\(\Leftrightarrow3>\dfrac{6}{-3}\)
\(\Leftrightarrow x< -2\)
Vậy nghiệm của bpt \(S=\left\{-2\right\}\)
2.b)
\(\dfrac{2\left(x+1\right)}{3}-2\ge\dfrac{x-2}{2}\)
\(\Leftrightarrow4\left(x+1\right)-2.6\ge3x-6\)
\(\Leftrightarrow4x+4-12\ge3x-6\)
\(\Leftrightarrow4x-3x\ge-6-4+12\)
\(\Leftrightarrow x\ge2\)
vậy nghiệm của bpt x\(\ge\)2
\(=\dfrac{9}{8}\left(x+2\right)^{2m-1}\left(x-3\right)^{n-4}\)