K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2015

học học nữa học mãi

=> sẽ học giỏi

18 tháng 1 2016

14 tiếng 

Tick mk vài cái cho lên 220 nha !!!

18 tháng 1 2016

mình nhầm

nhà bác học ngủ dc 2 tiếng thôi vì 19h=7h tối mà đặt báo thức 9h sáng mai hay ngay tối hôm ấy

11 tháng 1 2019

tiếc quá chị ơi , em cũng muốn tìm người bạn. nhưng em mới lớp 7 thôi. hay chị em mình làm bạn nhé. 

14 tháng 6 2019

à nhon mik thiếu 

Cho a > 0; b > 0; c > 0

Chứng minh bất đẳng thức: 40 đề luyện thi học sinh giỏi môn Toán lớp 9

abc là số bất kì lớn hơn 0

học tốt

6 tháng 6 2016

Có mình=))

6 tháng 6 2016

như thế cũng được

3 tháng 12 2018

Sai rồi

Học cho tương lai của mình

3 tháng 12 2018

Biết là hok cho tương lai nhưng xét về mức độ hok cơ mà

2 tháng 5 2017

bạn đọc thêm về nguyên lí Dirichlet nhé

24 tháng 6 2018

giả sử các số đó là x;y với x>1 ; y>1 và không làm giảm tính tổng quát, ta có thể đặt: \(x\le y\)

Theo đề bài, ta có: \(\left(x+1\right)⋮y\) và \(\left(y+1\right)⋮x\)

Do vậy: \(\left[\left(x+1\right)\left(y+1\right)\right]⋮xy\)

\(\left(xy+x+y+1\right)⋮xy\Rightarrow\left(x+y+1\right)⋮xy\)

Hay x+y+1 = p.xy với p thuộc N

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=p\)

Vì \(x\ge1;y\ge1\) Nên rõ ràng là: \(0< \frac{1}{x}+\frac{1}{y}+\frac{1}{xy}\le1+1+1=3\)

Vậy p chỉ có thể nhận một trong các giá trị 1;2;3

- Với p = 3 thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=3\Rightarrow\left(1;1\right)\)

- Với p = 2 thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=2\) => Phương trình vô nghiệm

- Với  p =1 thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1\Rightarrow\left(2;3\right)\)

Vậy có 3 cặp số thỏa mãn yêu cầu: (1;1) ; (2;3) ; (3;2)

P/s: Không chắc lắm. Nếu còn nhiều sai sót, mong các anh/chị, thầy cô sửa cho em

24 tháng 6 2018

Trời đất, bạn MMS giỏi ghê. Thế mà mình nghĩ mãi không ra. Cảm ơn bạn nhiều