Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích đa thức thành nhân tử (trình bày rõ và hướng dẫn cách làm giùm em)
4x(x+y)(x+y+z)(x+z)+y2z2
Phân tích đa thức thành nhân tử (trình bày rõ và hướng dẫn cách làm giùm em)
4x(x+y)(x+y+z)(x+z)+y2z2
a) Đơn giản : 3x3y2 : x2 = 3xy2
b) x^5 + 4x^3 - 6x^2 4x^2 1/4x^3 + x +3/2 x^5 4x^3 - 6x^2 4x^3 6x^2 6x^2 0
\(A=\frac{b^3-3b^2c+3bc^2-c^3+c^3-3c^2a+3ca^2-a^3+a^3-3a^2b+3ab^2-b^3}{a^2b-a^2c+b^2c-ab^2+c^2a-bc^2}\)
\(=\frac{-3b^2c+3bc^2-3c^2a+3ca^2-3a^2b+3ab^2}{b^2c-bc^2+c^2a-ac^2+a^2b-ab^2}\)
\(=\frac{-3\left(b^2c-bc^2+c^2a-ca^2+a^2b-ab^2\right)}{b^2c-bc^2+c^2a-ca^2+a^2b-ab^2}=-3\)
\(C=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2}\)
\(=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}=\frac{x+y+z}{2}\)
P/s: bài b sai đề thì pải
(x - y)^2 + (y - z)^2 + (z - x)^2 = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> x^2 - 2xy + y^2 + y^2 - 2yz + z^2 + z^2 - 2zx + x^2 = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> 2(x^2 + y^2 + z^2 - xy - yz - zx) = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> 2(x^2 + y^2 + z^2 - xy - yz - zx) = 0
<=> 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz = 0
<=> (x^2 - 2xy + y^2) + (y^2 - 2yz + z^2) + (z^2 - 2zx + x^2) = 0
<=> (x - y)^2 + (y - z)^2 + (z - x)^2 = 0
<=> x - y = 0 và y - z = 0 và z - x = 0
<=> x = y và y = z và z = x
<=> x = y = z
Lớp 8 thì bài này hơi phức tạp, lớp 9 sử dụng delta kẹp biến sẽ dễ hơn
Hướng dẫn 1 câu, câu sau bạn tự làm nhé:
\(\left(2x^2-xy-y^2\right)+7x+2y-7=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+7x+2y-7=0\)
(Đến đây ta cần chuyển về dạng \(XY+a.X+b.Y+...\) để đưa về pt nghiệm nguyên quen thuộc.
Do đó ta cần phân tách \(7x+2y\) về dạng \(a\left(x-y\right)+b\left(2x+y\right)\)
\(7x+2y=a\left(x-y\right)+b\left(2x+y\right)\)
\(\Leftrightarrow7x+2y=\left(a+2b\right)x+\left(-a+b\right)y\)
Đồng nhất hệ số 2 vế: \(\left\{{}\begin{matrix}a+2b=7\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=3\end{matrix}\right.\)
Do đó ta tách được như dưới đây, toàn bộ phần tách trên làm ở nháp):
\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+\left(x-y\right)+3\left(2x+y\right)-7=0\)
(Dạng cơ bản \(XY+X+3Y-7=0\) rồi)
\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+\left(x-y\right)+3\left(2x+y\right)+3-10=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x+y+1\right)+3\left(2x+y+1\right)=10\)
\(\Leftrightarrow\left(x-y+3\right)\left(2x+y+1\right)=10\)
Đến đây thì chỉ cần lập bảng ước số là xong
Làm bằng cách lớp 9 như nào vậy anh . Anh hướng dẫn e trước năm sau đỡ phải hỏi lại :D
2) \(x^4-x^2+2x+2\)
\(=x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\)
\(=x^2\left(x-1+2\right)\left(x+1\right)\)
\(=x^2\left(x+1\right)^2\)
\(=\left(x^2+x\right)^2\)
Vậy \(x^4-x^2+2x+2\)là số chính phương với mọi số nguyên x