Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\) =\(a^2+b^2+c^2-2ab-2bc+2ac-b^2+2bc-c^2+2ab-2ac\) =\(a^2\) b)\(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\) =\(\left(3x+1\right)^2-2\left(3x+3-2\right)\left(3x+3+2\right)+\left(3x+5\right)^2\) =\(\left(3x+1\right)^2-2\left(\left(3x+3\right)^2-4\right)+\left(3x+5\right)^2\) =\(9x^2+6x+1-18x^2-36x-9+8+9x^2+30x+25\) =25 c)\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)\) =\(\left(2-1\right)\left(2+1\right)\left(2^2+1\right)....\left(2^{64}+1\right)\) =\(\left(2^2-1\right)\left(2^2+1\right)...\left(2^{64}+1\right)\) =... =\(\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1\) \)
d)Tương tự
\(a,\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)
=\(a^2+b^2+c^2-2ab-2bc+2ac-b^2+2bc-c^2+2ab-2ac\)
=\(a^2\)
b)\(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
=\(\left(3x+1\right)^2-2\left(3x+3-2\right)\left(3x+3+2\right)+\left(3x+5\right)^2\)
=\(\left(3x+1\right)^2-2\left(\left(3x+3\right)^2-4\right)+\left(3x+5\right)^2\)
=\(9x^2+6x+1-18x^2-36x-9+8+9x^2+30x+25\)
=25
c)\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)\)
=\(\left(2-1\right)\left(2+1\right)\left(2^2+1\right)....\left(2^{64}+1\right)\)
=\(\left(2^2-1\right)\left(2^2+1\right)...\left(2^{64}+1\right)\)
=...
=\(\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1\)
d)Tương tự
a: \(=\left[a-\left(b-c\right)\right]^2-\left(b-c\right)^2+2ab-2ac\)
\(=a^2-2a\left(b-c\right)+\left(b-c\right)^2-\left(b-c\right)^2+2ab-2ac\)
\(=a^2-2ab+2ac+2ab-2ac=a^2\)
b: \(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
\(=\left(3x+1-3x-5\right)^2\)
\(=\left(-4\right)^2=16\)
c: \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\cdot...\cdot\left(2^{64}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\cdot\left(2^{32}+1\right)\left(2^{64}+1\right)\)
\(=2^{128}-1\)
d: \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)
\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)
\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)
\(=\dfrac{3^{64}-1}{2}\)
a) \(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
\(=\left[\left(3x+1\right)-\left(3x+5\right)\right]^2\)
\(=\left(3x+1-3x-5\right)^2\)
\(=\left(-4\right)^2\)
\(=16\)
b) \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(=\dfrac{1}{2}\left(3^{64}-1\right)\)
a) (3x + 1)^2 - 2(3x + 1)(3x - 5) + (3x - 5)^2
= 9x^2 + 6x + 1 - 18x^2 + 24x + 10 + 9x^2 - 30x + 25
= 36
b) (3x^2 - y)^2
= 9x^4 - 6x^2y + y^2
c) (3x + 5)^2 + (3x - 5)^2 - (3x + 2)(3x - 2)
= 9x^2 + 30x + 25 + 9x^2 - 30x + 25 - 9x^2 + 4
= 9x^2 + 54
d) 2x(2x - 1)^2 - 3x(x + 3)(x - 3) - 4x(x + 1)^2
= 8x^3 - 8x^2 + 2x - 3x^2 + 27x - 4x^3 - 8x^2 - 4x
= x^3 - 16x^2 + 25x
e) (x - 2)(x^2 + 2x + 4) - (x + 1)^2 + 3(x - 1)(x + 1)
= x^3 - 8 - x^2 - 2x - 1 + 3x^2 - 2
= x^3 + 2x^2 - 2x - 12
f) (x^4 - 5x^2 + 25)(x^2 + 5) - (2 + x^2)^2 + 3(1 + x^2)^2
= x^6 + 125 - 4 - 4x^2 - x^2 + 3 + 6x^2 + 3x^4
= x^6 + 2x^4 + 2x^2 + 124
a, (4x-3)(3x+2)-(6x+1)(2x-5)+1
=12x2-8x-9x+6-12x2+30x-2x+5+1
=11x+12
b, (3x+4)2+(4x-1)2+(2+5x)(2-5x)
=9x2+24x+16+16x2-8x+1+4-25x2
=16x+21
c, (2x+1)(4x22x+1)+(2-3x)(4+6x+9x2)-9
=8x3+1+8-27x3-9
=-19x3
( 3x+2). (3x-2)+(x-3)2-10x
=9x2-4+x2-6x+9-10x
=9x2-4+x2-6x+9
=10x-16x+5
(2x+y)2+ (x-2y)2-5. (x+y).(x-y)
=4x2+4xy+y2+x2-4xy+4y2-5.(x2-y2)
=4x2+4xy+y2+x2-4xy+4y2-5x2+5y2
=10y2
(3x-5)2- x.(3x-5)
=9x2-30x+25-3x2+15
=6x2-30x+40