Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ˆRBA=ˆSBORBA^=SBO^(cùng phụ với góc tới và góc phản xạ)
Ta có:
ΔRAB∼ΔSBO(g.g)ΔRAB∼ΔSBO(g.g) vì:
ˆRAB=ˆSOB(=90o)RAB^=SOB^(=90o)
widehatRBA=ˆSBOwidehatRBA=SBO^
→ABOB=RASO→28=1,6SO→SO=6,4(m)→ABOB=RASO→28=1,6SO→SO=6,4(m)
Vậy bống đèn cao 6,4m
2m 10m 1,6m A B D E C
ta có ED\(\perp AB\),\(BC\perp AB\)
=>ED//BC( tc)
=>\(\widehat{AED}=\widehat{ECB}\left(tc\right)\),\(\widehat{ADE}=\widehat{ABC}=90^O\)(tc)
xét \(\Delta AED\)và\(\Delta ACB\)có:
AED=ECB (cmt)
ADE=ABC (cmt)
=> \(\Delta AED\)đồng dạng \(\Delta ACB\)(g-g)
=>\(\frac{DE}{BC}=\frac{AD}{AB}\)
HAY \(\frac{1,6}{BC}=\frac{2}{10+2}\)
=>BC=9,6 m
vậy chiều cao của trụ điện =9,6m
3,2m 3,2m 1,6m 8m S I A B S' A' B' H
Khoảng cách từ hồ tới điểm không nhìn thấy ảnh của bóng đèn là BB'
Xét tam giác HBS' và B'BA'
\(\widehat{S'HB}=\widehat{A'B'B}=90^0\)
\(\widehat{HBS'}=\widehat{A'BB'}\) ( 2 góc đối đỉnh )
\(\widehat{HS'B}=\widehat{BA'B'}\) ( 2 góc so le trong )
\(\Rightarrow\) tam giác HBS' đồng dạng tam giác B'BA'
\(\Rightarrow\frac{HB}{BB'}=\frac{HS'}{A'B'}=\frac{S'B}{A'B}\)
Xét \(\frac{HB}{BB'}=\frac{HS'}{A'B'}\)
Ta có \(\left\{\begin{matrix}HB=8m\\AB=A'B'=1,6m\\HS'=3,2m\end{matrix}\right.\)
\(\Rightarrow\frac{8m}{BB'}=\frac{3,2m}{1,6m}\)
\(\Rightarrow\frac{8m}{BB'}=2m\)
\(\Rightarrow BB'=4m\)
Vậy người đó phải lùi xa hồ 1 khoảng ít nhất là 4m để không thể nhìn thấy ảnh của bóng đèn
a. Gọi AB là cột điện, A là bóng đèn, A’ là ảnh của bóng đèn qua mặt nước (xem mặt nước như là gương phẳng), các tia tới bất kỳ AI, AK sẽ phản xạ theo hướng A’I và A’K đến mắt (M) của người quan sát
b. Gọi BC là bề rộng của hồ, H là điểm xa nhất mà khi người quan sát đứng tại đó thì mắt của người đó còn nhìn thấy ảnh A’
Nếu người quan sát đi ra ngoài khoảng CH thì mắt không còn nhìn thấy A’ của A qua hồ nữa.
Xét CBA đồng dạng với CHM
Ta có: = = CH = = 4m
Vậy khi người ấy rời xa hồ từ 4m trở đi sẽ không còn thấy ảnh của bóng đèn nữa.
mk gặp cùng 1 câu này trên violympic mà sao có lúc ra đ/a là 4, có lúc lại là 12 z các bn
Chiều cao của cột điện đó là :
\(10+2+1,6=13,6\left(m\right)\)
Gọi \(BC\) là bề rộng của hồ, \(H\) là điểm xa nhất mà khi người quan sát đứng tại đó thì mắt của người đó còn nhìn thấy \(A'\) (ảnh bóng đèn qua mặt nước)
Nếu quan sát ngoài khoảng CH thì mắt không còn nhìn thấy A' của A qua hồ nữa.
Ta có: \(\frac{BC}{CH}=\frac{AB}{HM}=\frac{8}{CH}=\frac{3,2}{1,6}\Rightarrow CH=4\left(m\right)\) (tức thầy Tiến)
Tương đương đó: thầy Phynit phải lùi: \(\frac{8}{CH}=\frac{3,2}{1,4}=3,5\left(m\right)\)
Vậy: ta được thầy Tiến lùi 4m, thầy Phynit lùi 3,5 m
\(\Delta ABI~\Delta CDI\)
\(\Rightarrow\dfrac{AB}{CD}=\dfrac{AI}{CI}\)
\(\Rightarrow CD=AB.\dfrac{CI}{AI}=1,6.\dfrac{8}{10-8}=6,4\left(m\right)\)
B A I C D AB:chiều cao đất tới mắt I: vị trí vũng nước DC: chiều cao đèn
RBAˆ=SBOˆRBA^=SBO^(cùng phụ với góc tới và góc phản xạ)
Ta có:
ΔRAB∼ΔSBO(g.g)ΔRAB∼ΔSBO(g.g) vì:
RABˆ=SOBˆ(=90o)RAB^=SOB^(=90o)
widehatRBA=SBOˆwidehatRBA=SBO^
→ABOB=RASO→28=1,6SO→SO=6,4(m)→ABOB=RASO→28=1,6SO→SO=6,4(m)
Vậy bống đèn cao 6,4m