Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:\(\left|2x-1\right|=2x-1\) khi \(x>0\)
b)\(\left|0,5-3x\right|=3x-0.5\) khi x= 4
c)\(\left|5x+1\right|-10x=0,5\) khi x= 0,1
Bài 2:Min A=0
Min B=-2
Bài 1:
a, \(\left|2x-1\right|=2x-1\)
+) Xét \(x\ge\dfrac{1}{2}\) ta có:
\(2x-1=2x-1\)
\(\Rightarrow x\) tùy ý với \(x\ge\dfrac{1}{2}\)
+) Xét \(x< \dfrac{1}{2}\) ta có:
\(1-2x=2x-1\)
\(\Rightarrow4x=2\)
\(\Rightarrow x=\dfrac{1}{2}\) ( không t/m )
Vậy...
b, \(\left|0,5-3x\right|=3x-0,5\)
+) Xét \(x\ge\dfrac{1}{6}\) ta có:
\(0,5-3x=3x-0,5\)
\(\Rightarrow6x=1\)
\(\Rightarrow x=\dfrac{1}{6}\) ( t/m )
+) Xét \(x< \dfrac{1}{6}\) ta có:
\(3x-0,5=3x-0,5\)
\(\Rightarrow x\) tùy ý với \(x< \dfrac{1}{6}\)
Vậy \(x\le\dfrac{1}{6}\)
c, \(\left|5x+1\right|-10x=0,5\)
+) Xét \(x\ge\dfrac{-1}{5}\) ta có:
\(5x+1-10x=0,5\)
\(\Rightarrow-5x=-0,5\)
\(\Rightarrow x=\dfrac{1}{10}\) ( t/m )
+) Xét \(x< \dfrac{-1}{5}\) ta có:
\(-5x-1-10x=0,5\)
\(\Rightarrow-15x=1,5\)
\(\Rightarrow x=\dfrac{-1}{10}\) ( không t/m )
Vậy \(x=\dfrac{1}{10}\)
Bài 2:
a, Ta có: \(-\left|x-3,5\right|\le0\)
\(\Rightarrow A=0,5-\left|x-3,5\right|\le3,5\)
Dấu " = " xảy ra khi \(-\left|x-3,5\right|=0\Rightarrow x=3,5\)
Vậy \(MIN_A=0,5\) khi x = 3,5
b, Ta có: \(-\left|1,4-x\right|\le0\)
\(\Rightarrow B=-\left|1,4-x\right|-2\le-2\)
Dấu " = " xảy ra khi \(-\left|1,4-x\right|=0\Rightarrow x=1,4\)
Vậy \(MIN_B=-2\) khi \(x=1,4\)
a, \(\left|x+2\right|-\left|x+7\right|=0\Rightarrow\left|x+2\right|=\left|x+7\right|\Rightarrow\orbr{\begin{cases}x+2=x+7\\x+2=-x-7\end{cases}\Rightarrow\orbr{\begin{cases}0=5\left(loại\right)\\2x=-9\end{cases}\Rightarrow}x=\frac{-9}{2}}\)
b, - Nếu \(2x-1\ge0\Rightarrow x\ge\frac{1}{2}\), ta có: 2x - 1 = 2x - 1 => 2x = 2x (thỏa mãn với mọi x)
- Nếu 2x - 1 < 0 => \(x< \frac{1}{2}\), ta có: 2x - 1 = 1 - 2x => 4x = 2 => x = \(\frac{1}{2}\) (không thỏa mãn điều kiện)
Vậy \(x\ge\frac{1}{2}\)
c,d tương tự b
e, tương tự a
a.
\(\frac{x}{15}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{15+5+3}=\frac{10}{23}\) [theo tính chất của dãy tỉ số bằng nhau]
=> x = 10/23 * 15 = 150/23
y = 10/23 * 5 = 50/23
z = 10/23 * 93 = 30/23
b.
\(\frac{x}{15}=\frac{y}{5}=\frac{z}{3}\Leftrightarrow\frac{2x}{30}=\frac{3y}{15}=\frac{z}{3}=\frac{2x-3y+z}{30-15+3}=\frac{32}{18}=\frac{16}{9}\)[theo tính chất của dãy tỉ số bằng nhau]
=> 2x = 16/9 * 30 = 160/3 => x = 80/3
3y = 16/9 * 15 = 80/3 => y = 80/9
z = 16/9 * 3 = 48/9
c.
\(\frac{x}{15}=\frac{y}{5}=\frac{z}{3}\Leftrightarrow\frac{x}{15}=\frac{2y}{10}=\frac{3z}{9}=\frac{x+2y-3z}{15+10-9}=\frac{14}{16}=\frac{7}{8}\)[theo tính chất của dãy tỉ số bằng nhau]
=> x = 7/8 * 15 = 105/8
2y = 7/8 * 10 = 70/8 => y = 35/8
3z = 7/8 * 9 = 63/8 => z = 21/8