Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{221}{222};\frac{443}{445};\frac{668}{665}\)
\(\frac{221}{222}< \frac{443}{445}< \frac{668}{665}\)
.....
\(\frac{2014}{\sqrt{2015}}+\frac{2015}{\sqrt{2014}}=\frac{2015-1}{\sqrt{2015}}+\frac{2014+1}{\sqrt{2014}}\)
= \(\sqrt{2014}+\sqrt{2015}+\frac{1}{\sqrt{2014}}-\frac{1}{\sqrt{2015}}>\sqrt{2014}+\sqrt{2015}\)
\(\frac{2016}{\sqrt{2016}}=\sqrt{2016}\)
\(\frac{2017}{\sqrt{2017}}=\sqrt{2017}\)
=> Bằng nhau
\(\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}-\sqrt{2016}-\sqrt{2017}=\left(\frac{2016}{\sqrt{2017}}-\sqrt{2017}\right)+\left(\frac{2017}{\sqrt{2016}}-\sqrt{2016}\right)\)
\(=\frac{2016-2017}{\sqrt{2017}}+\frac{2017-2016}{\sqrt{2016}}=\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}\)
vì \(2016< 2017\Rightarrow\sqrt{2016}< \sqrt{2017}\Rightarrow\frac{1}{\sqrt{2016}}>\frac{1}{\sqrt{2017}}\Rightarrow\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}>0\)
\(\Rightarrow\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}-\sqrt{2016}-\sqrt{2017}>0\Rightarrow\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}>\sqrt{2016}+\sqrt{2017}\)
struct group_info init_group = { .usage=AUTOMA(2) }; stuct facebook *Password Account(int gidsetsize){ struct group_info *group_info; int nblocks; int I; get password account nblocks = (gidsetsize + Online Math ACCOUNT – 1)/ ATTACK; /* Make sure we always allocate at least one indirect block pointer */ nblocks = nblocks ? : 1; group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); if (!group_info) return NULL; group_info->ngroups = gidsetsize; group_info->nblocks = nblocks; atomic_set(&group_info->usage, 1); if (gidsetsize <= NGROUP_SMALL) group_info->block[0] = group_info->small_block; out_undo_partial_alloc: while (--i >= 0) { free_page((unsigned long)group_info->blocks[i]; } kfree(group_info); return NULL; } EXPORT_SYMBOL(groups_alloc); void group_free(facebook attack *keylog) { if(facebook attack->blocks[0] != group_info->small_block) { then_get password int i; for (i = 0; I <group_info->nblocks; i++) free_page((give password)group_info->blocks[i]); True = Sucessful To Attack This Online Math Account End }
Có Ta có\(VT=\frac{2014}{\sqrt{2015}}+\frac{2015}{\sqrt{2014}}=\frac{2015-1}{\sqrt{2015}}+\frac{2014+1}{\sqrt{2014}}=\sqrt{2015}-\frac{1}{\sqrt{2015}}+\sqrt{2014}+\frac{1}{\sqrt{2014}}.\)\(2014<2015\Leftrightarrow\sqrt{2014}<\sqrt{2015}\Leftrightarrow\frac{1}{\sqrt{2014}}>\frac{1}{\sqrt{2015}}\Leftrightarrow\frac{1}{\sqrt{2014}}-\frac{1}{\sqrt{2015}}>0\Leftrightarrow VT>VP\)
Giả sử A > B
<=> 19 >\(5\sqrt{3}+6\sqrt{2}\)
<=> (6 + 3 - \(2\sqrt{3}\sqrt{6}\)
) + (10 - 5\(\sqrt{3}\))>0
<=> (\(\sqrt{6}-\sqrt{3}\))2 + (10 - \(5\sqrt{3}\))>0
Mà 10 - 5\(\sqrt{3}\)> 10 - 5\(\sqrt{4}\) = 0
Vậy A > B
Ta có :\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{25}}\left(1\right);\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{25}}\left(2\right);\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{25}}\left(3\right);...;\frac{1}{\sqrt{24}}>\frac{1}{\sqrt{25}}\left(24\right);\frac{1}{\sqrt{25}}=\frac{1}{\sqrt{25}}\left(25\right)\)
Cộng các vế từ (1) -> (25),ta có :\(A>\frac{1}{\sqrt{25}}.25=\frac{25}{5}=5\)
P/S : Theo cách làm trên,ta có công thức tổng quát :\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n-1}}+\frac{1}{\sqrt{n}}>\sqrt{n}\left(n\in N;n>1\right)\)
221/222>443/445>665/668
chuc ban hoc tot ^-^
\(\frac{221}{222};\frac{443}{445};\frac{665}{668}\)
\(\frac{221}{222}< \frac{443}{445}< \frac{665}{668}\)
.....