K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2020

a) \(\frac{2}{3}=\frac{8}{12}\) ; \(\frac{1}{4}=\frac{3}{12}\)

mà 8 > 3 ⇒ \(\frac{8}{12}>\frac{3}{12}\)\(\frac{2}{3}>\frac{1}{4}\)

b) \(\frac{7}{10}\)\(\frac{7}{8}\); mà 10 > 8 ⇒ \(\frac{7}{10}< \frac{7}{8}\)

c) \(\frac{6}{7}=\frac{30}{35}\); \(\frac{3}{5}=\frac{21}{35}\)

mà 30 > 21 ⇒ \(\frac{30}{35}>\frac{21}{35}\)\(\frac{6}{7}>\frac{3}{5}\)

d) \(\frac{14}{21}=\frac{2}{3}\); \(\frac{60}{72}=\frac{5}{6}\)

\(\frac{2}{3}=\frac{4}{6}\)\(\frac{2}{3}< \frac{5}{6}\)\(\frac{14}{21}< \frac{60}{72}\)

e) \(\frac{38}{133}=\frac{2}{7}\); \(\frac{129}{344}=\frac{3}{8}\)

\(\frac{2}{7}=\frac{16}{56}\) ; \(\frac{3}{8}=\frac{21}{56}\) mà 16<21 ⇒ \(\frac{16}{56}< \frac{21}{56}\)\(\frac{38}{133}< \frac{129}{344}\)

f) \(\frac{11}{54}=\frac{22}{108}\)\(\frac{22}{37}\) mà 108 > 37 ⇒ \(\frac{22}{108}< \frac{22}{37}\)\(\frac{11}{54}< \frac{22}{37}\)

4 tháng 6 2020

g) A > B

19 tháng 11 2021

Bài 1 :

a) \(A=\frac{-1}{4.5}+\frac{-1}{5.6}-\frac{-1}{7.8}+\frac{-1}{9.10}\)

\(A=\frac{1}{4}\)\(-\left(-\frac{1}{5}\right)+...+\left(-\frac{1}{9}\right)-\left(-\frac{1}{10}\right)\)

\(A=\frac{1}{4}+\frac{1}{10}\)

\(A=\frac{3}{20}\)

19 tháng 11 2021

Bài 2:

a,17178585=1717:17178585:1717=15;13135151=1313:1015151:101=135115=51255<65255=1351⇒17178585<13135151a,17178585=1717:17178585:1717=15;13135151=1313:1015151:101=135115=51255<65255=1351⇒17178585<13135151

b,201201202202=201201:1001202202:1001=201202=201⋅1001001202⋅1001001=201201201202202202

14 tháng 4 2019

1. \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)>1

2. A>B

15 tháng 3 2019

a)\(9^{12}=\left(3^2\right)^{12}=3^{24}\)

 \(27^7=\left(3^3\right)^7=3^{21}\)

\(\Rightarrow9^{12}>27^7\)

15 tháng 3 2019

a) bạn Mạnh làm rồi và đúng

b) Ta có : \(333^{444}=\left(333^4\right)^{111}=\left[\left(3.111\right)^4\right]^{111}=\left[\left(3^4.111^4\right)\right]^{111}=\left(84.111^4\right)^{111}\)

                \(444^{333}=\left(444^3\right)^{111}=\left[\left(4.111\right)^3\right]^{111}=\left[\left(4^3.111^3\right)\right]^{111}=\left(64.111^3\right)^{111}\)

Ta thấy (84.1114)111 > ( 64.1113)111 => 333444 > 444333

Vậy...

c) Vì \(17^{2002}+1>17^{2001}+1\)

\(\Rightarrow\frac{17^{2001}+1}{17^{2002}+1}< \frac{17^{2001}+1}{17^{2001}+1}\)

    

11 tháng 5 2017

Bài 2:

a, S = 1/11 + 1/12 + .. +1/20 với 1/2

SỐ số hạng tổng S: [20 - 11]: 1 + 1 = 10 số

mà 1/11 > 1/20

      1/12 > 1/20

.........................

      1/20 = 1/20

=> 1/11 + 1/12 + ... + 1/20 > 1/20 . 10 => S > 1/2

b, B = 2015/2016 + 2016/2017 và C = 2015+2016/2016+2017

Dễ dàng ta thấy: C = 4031/4033 < 1

B = 2015/2016 + 2016/2017

B = 2015/2016 + [1/2016 + 4062239/4066272]

B = [2015/2016 + 1/2016] + 4062239/4066272]

B = 1 +4062239/4066272

=> B > 1 

Vậy B > C

c, [-1/5]^9 và [-1/25]^5

ta có: 255 = [52]5 = 52.5 = 510 > 59

=> [1/5]9 > [1/25]5

=> [-1/5]9 < [-1/25]5

d, 1/32+1/42+1/52+1/62 và 1/2

ta có: 1/3^2 + 1/4^2 + 1/5^2 + 1/6^2 = 1/9 + 1/16 + 1/25 + 1/36

mà: 1/9 < 1/8

      1/16 < 1/8

      1/25 < 1/8

      1/36 < 1/8

=> 1/9+1/16+1/25+1/36 < 1/2

Vậy 1/32+1/42+1/52+1/62 < 1/2

11 tháng 5 2017

Bài 1:

A = 3/4 . 8/9 . 15/16....2499/2500

A = [1.3/22][2.4/32]....[49.51/502]

A = [1.2.3.4.5...51 / 2.3.4....50][3.4.5...51 / 2.3.4...50]

A = 1/50 . 51/2

A = 51/100

B = 22/1.3 + 32/2.4 + ... + 502/49.51

B = 4/3.9/8....2500/2499

Nhận thấy B ngược A => B = 100/51 [cách tính tương tự tính A]

Bài 2:

a. S = 1/11+1/12+...+1/20 và 1/2

Số số hạng tổng S: [20 - 11]: 1 + 1 = 10 [ps]

ta có: 1/11 > 1/20

15 tháng 3 2019

a)

\(10A=\frac{10^{2002}+10}{10^{2002}+1}=1+\frac{9}{10^{2002}+1}\)

\(10B=\frac{10^{2003}+10}{10^{2003}+1}=1+\frac{9}{10^{2003}+1}\)

=> 10A > 10B => A > B

19 tháng 4 2015

B = \(\frac{2^3.5.7.5^2.7^3}{\left(2.5.7^2\right)^2}=\frac{2^3.5^3.7^4}{2^2.5^2.7^4}=\frac{2.5.1}{1.1.1}=10\)

C = \(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{97.99}\right)\)\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{97}-\frac{1}{99}\right)\)\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)=\frac{1}{2}\left(\frac{33}{99}-\frac{1}{99}\right)=\frac{1}{2}.\frac{32}{99}=\frac{16}{99}\)

19 tháng 4 2015

1) \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{97.99}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{97}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}=\frac{33}{99}-\frac{1}{99}=\frac{32}{99}\)

19 tháng 7 2016

a)\(\frac{2}{6}+\frac{2}{12}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)

\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{2013}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{2013}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1}{2013}\)

đề sai

b)\(\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)

\(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

\(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

\(x+2004=0\).Do \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)

\(x=-2004\)

c)\(\frac{x+5}{205}-1+\frac{x+4}{204}-1+\frac{x+3}{203}-1=\frac{x+166}{366}-1+\frac{x+167}{367}-1+\frac{x+168}{368}-1\)

\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}=\frac{x-200}{366}+\frac{x-200}{367}+\frac{x-200}{368}\)

\(\frac{x-200}{205}+\frac{x-200}{204}+\frac{x-200}{203}-\frac{x-200}{366}-\frac{x-200}{367}-\frac{x-200}{368}=0\)

\(\left(x-200\right)\left(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\right)=0\)

\(x-200=0\).Do\(\frac{1}{205}+\frac{1}{204}+\frac{1}{203}-\frac{1}{366}-\frac{1}{367}-\frac{1}{368}\ne0\)

\(x=200\)

d)chịu