Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
các bạn ơi, giúp mk vs ngày mai mk phải học rồi!!!
help me-.- help me :)
a: \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
=>x=1 hoặc x=3
b: \(x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=3 hoặc x=-4
c: \(3x^2+2x-5=0\)
\(\Leftrightarrow3x^2+5x-3x-5=0\)
=>(3x+5)(x-1)=0
=>x=1 hoặc x=-5/3
d: \(x^4-2x^2-3=0\)
\(\Leftrightarrow x^4-3x^2+x^2-3=0\)
\(\Leftrightarrow x^2-3=0\)
hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)
ý a pạn đưa về dạng ax+b=0 khi chuyển 16 sang và rút gọn 2 biểu thức còn lại đưa về dạng (a+b)2+(a-b)2-16=0. thế thôi. hai biểu thức (x+3)4+(x-2) 4 tự phân tích nhé
Bài 1:
\(a,\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)
\(=x^6-3x^4+3x^2-1-x^6+1\)
\(=-3x^2\left(x^2-1\right)\)
\(b,\left(x^4-3x^2+9\right)\left(x^2+3\right)-\left(3+x^2\right)^3\)
\(=x^6+27-27-27x^2-9x^4-x^6\)
\(=-9x^2\left(3-x^2\right)\)
Bài 5:
\(A=x^2-2x+1\)
\(=\left(x^2-2x+1\right)-2\)
\(=\left(x-1\right)^2-2\)
Với mọi giá trị của x ta có:
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2-2\ge-2\)
Vậy Min A = -2
Để A = -2 thì \(x-1=0\Rightarrow x=1\)
b, \(B=4x^2+4x+5\)
\(=\left(4x^2+4x+1\right)+4\)
\(=\left(2x+1\right)^2+4\)
Với mọi giá trị của x ta có:
\(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+4\ge4\)
Vậy Min B = 4
Để B = 4 thì \(2x+1=0\Rightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)
c, \(C=2x-x^2-4\)
\(=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\)
Với mọi giá trị của x ta có:
\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-3\le-3\)Vậy Max C = -3
để C = -3 thì \(x-1=0\Rightarrow x=1\)
Bài 2:
a: \(x^2-16-\left(x+4\right)=0\)
=>(x+4)(x-4)-(x+4)=0
=>(x+4)(x-5)=0
=>x=5 hoặc x=-4
b: \(\left(3x-1\right)^2-\left(9x^2-1\right)=0\)
\(\Leftrightarrow9x^2-6x+1-9x^2+1=0\)
=>-6x+2=0
=>-6x=-2
hay x=1/3
c: \(4x^2+9=-12x^2\)
\(\Leftrightarrow4x^2+12x^2=-9\)
\(\Leftrightarrow16x^2=-9\)(vô lý)
Do đó: \(x\in\varnothing\)
d: \(4x^2-5x+1=0\)
\(\Leftrightarrow4x^2-4x-x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)=0\)
=>x=1 hoặc x=1/4
e: \(4x^2-4x+3=0\)
\(\Leftrightarrow4x^2-4x+1+2=0\)
\(\Leftrightarrow\left(2x-1\right)^2=-2\)(vô lý)
Do đó: \(x\in\varnothing\)
Bài 1:
a, \(2x\left(y-z\right)+5y\left(z-y\right)=2x\left(y-z\right)-5y\left(y-z\right)\)
\(=\left(y-z\right)\left(2x-5y\right)\)
b, \(x^3-3x^2+3x-1=x^3-x^2-2x^2+2x+x-1\)
\(=x^2.\left(x-1\right)-2x.\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-2x+1\right)=\left(x-1\right)\left(x^2-x-x+1\right)\)
\(=\left(x-1\right)\left(x-1\right)^2=\left(x-1\right)^3\)
c, \(7x^2-7xy-4x+4y=7x.\left(x-y\right)-4.\left(x-y\right)\)
\(=\left(x-y\right)\left(7x-4\right)\)
d, \(x^2-6x+8=x^2-2x-4x+8\)
\(=x.\left(x-2\right)-4\left(x-2\right)=\left(x-2\right)\left(x-4\right)\)
Chúc bạn học tốt!!!
1)
a) \(2x\left(y-z\right)+5y\left(z-y\right)\)
\(=2x\left(y-z\right)-5y\left(y-z\right)\)
\(=\left(y-z\right)\left(2x-5y\right)\)
b) \(x^3-3x^2+3x-1\)
\(=x^3-3.x^2.1+3.x.1^2-1^3\)
\(=\left(x-1\right)^3\)
c) \(7x^2-7xy-4x+4y\)
\(=7x\left(x-y\right)-4\left(x-y\right)\)
\(=\left(x-y\right)\left(7x-4\right)\)
d) \(x^2-6x+8\)
\(=x^2-4x-2x+8\)
\(=x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
2)
a) \(\left(5x^2+3x-1\right)\left(x+3\right)\)
\(=5x^3+3x^2-x+15x^2+9x-3\)
\(=5x^3+3x^2+15x^2-x+9x-3\)
\(=5x^3+18x^2+8x-3\)
b) \(\left(x^3+2x^2+3x-1\right):\left(x^2-2\right)\)
\(=x+2+\dfrac{5x+3}{x^2-2}\)
a.) \\(\\left(a+b+c\\right)^3-a^3-b^3-c^3\\)
\\(=a^3+b^3+c^3+3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc-a^3-b^3-c^3\\)\\(=3\\left(3a^2b+3ab^2+3a^2c+3ac^2+3b^2c+3bc^2+6abc\\right)\\)
\\(=3\\left(abc+a^2b+a^2c+ac^2+b^2c+ab^2+abc+bc^2\\right)\\)
\\(=3\\left[ab\\left(a+c\\right)+ac\\left(a+c\\right)+b^2\\left(a+c\\right)+bc\\left(a+c\\right)\\right]\\)
\\(=3\\left(a+c\\right)\\left(ab+ac+bc+b^2\\right)\\)
\\(=3\\left(a+c\\right)\\left[a\\left(b+c\\right)+b\\left(b+c\\right)\\right]\\)
\\(=3\\left(a+c\\right)\\left(a+b\\right)\\left(b+c\\right)\\)
b) 4a2b2-(a2 +b2-c2)2
=(2ab+a2+b2-c2)(2ab-a2-b2+c2)
=[(a+b)2-c2][c2-(a-b)2]
=(a+b+c)(a+b-c)(c+a-b)(c-a+b)
a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3ab\left(a+b\right)+3bc\left(b+c\right)+3ca\left(c+a\right)+6abc-a^3-b^3-c^3\)
\(=3ab\left(a+b\right)+3bc\left(b+c\right)+3ca\left(c+a\right)+6abc\)
\(=3\left(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\right)\)
\(=3\left(ab\left(a+b\right)+b^2c+abc+bc^2+c^2a+ca^2+abc\right)\)
\(=3\left(ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)+ac\left(a+b\right)\right)\)
\(=3\left(a+b\right)\left(ab+bc+c^2+ac\right)\)
\(=3\left(a+b\right)\left[b\left(a+c\right)+c\left(a+c\right)\right]\)
\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
(1) đa thức A\(⋮̸\) B vì \(7x⋮̸\)3x2
(2) đa thức A\(⋮̸\) B vì 2ab3c2 \(⋮̸\) -5a2bc2
(1) A chia hết cho B vì từng hạng tử của A đều chia hết cho B
(2) A ko chia hết cho B vì hạng tử -2ab3c2 ko chia hết cho B ( a<a2 )
nếu thấy hay thì đừng quên tích đúng cho mk nha