K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

Ta có: Δ=b2-4ac

Δ=(-3)2-4.2.1

Δ=1>0

⇒Pt luôn có 2 nghiệm

Theo hệ thức vi ét ta có:

x1.x2=1/2=0,5 : x1+x2=3/2=1,5

a,A=\(\dfrac{1}{x_1}+\dfrac{1}{x_{2_{ }}}=\dfrac{x_1+x_2}{x_1.x_2}\) =\(\dfrac{1,5}{0,5}=3\)

b,B=\(\dfrac{1-x_1}{x_1}+\dfrac{1-x_2}{x_2}=\dfrac{1}{x_1}-1+\dfrac{1}{x_2}-1\)

B= 3 - 2 = 1

c,C=x13+x23=(x1+x2)3-3x1x2(x1+x2)

C=1,52 - 3 . 0,5 . 1,5 =0

NV
3 tháng 3 2019

\(\left(2-\sqrt{3}\right)^3+a\left(2-\sqrt{3}\right)^2+b\left(2-\sqrt{3}\right)-1=0\)

\(\Leftrightarrow7a+2b+25-\left(4a+b+15\right)\sqrt{3}=0\)

Do \(a,b\) hữu tỉ và \(\sqrt{3}\) vô tỉ

\(\Rightarrow\left\{{}\begin{matrix}7a+2b+25=0\\4a+b+15=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-5\\b=5\end{matrix}\right.\)

Khi đó pt có dạng:

\(x^5-5x^2+5x-1=0\Leftrightarrow\left(x-1\right)\left(x^2-4x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x^2-4x+1=0\left(1\right)\end{matrix}\right.\)

Giả sử \(x_3=1\)\(x_1;x_2\) là nghiệm của \(\left(1\right)\Rightarrow\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=4^3-12=52\\x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2=14\end{matrix}\right.\)

\(\Rightarrow S=\dfrac{1}{x^5_1}+\dfrac{1}{x^5_2}+1=A+1\)

\(A=\dfrac{x_1^5+x_2^5}{\left(x_1x_2\right)^5}=x_1^5+x_2^5=\left(x_1^3+x_2^3\right)\left(x_1^2+x^2_2\right)-\left(x_1x_2\right)^2\left(x_1+x_2\right)\)

\(\Rightarrow A=52.14-4=724\)

\(\Rightarrow S=A+1=725\)

\(y_1+y_2=\left(x_1+x_2\right)+\dfrac{x_1+x_2}{x_1x_2}\)

\(=\dfrac{-5}{3}+\dfrac{-5}{3}:\left(-2\right)=\dfrac{-5}{3}+\dfrac{5}{6}=\dfrac{-5}{6}\)

\(y_1y_2=\left(x_1+\dfrac{1}{x_2}\right)\left(x_2+\dfrac{1}{x_1}\right)\)

\(=x_1x_2+2+\dfrac{1}{x_1x_2}=\left(-2\right)+2+\dfrac{1}{\left(-2\right)}=\dfrac{-1}{2}\)

Pt cần tìm có dạng là \(y^2+\dfrac{5}{6}y-\dfrac{1}{2}=0\)

AH
Akai Haruma
Giáo viên
25 tháng 5 2018

Bài 1:

Trước tiên để pt có hai nghiệm thì:

\(\Delta'=2^2-(m+1)>0\Leftrightarrow m<3\)

Áp dụng định lý Viete cho pt bậc 2 là: \(\left\{\begin{matrix} x_1+x_2=-4\\ x_1x_2=m+1\end{matrix}\right.\)

Điều kiện: $x_1,x_2\neq 0$ \(\Leftrightarrow x_1x_2=m+1\neq 0\Leftrightarrow m\neq -1\)

Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{10}{3}\)

\(\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=\frac{10}{3}\Leftrightarrow \frac{x1^2+x_2^2+2x_1x_2}{x_1x_2}=\frac{16}{3}\)

\(\Leftrightarrow \frac{(x_1+x_2)^2}{x_1x_2}=\frac{16}{3}\Leftrightarrow \frac{(-4)^2}{m+1}=\frac{16}{3}\)

\(\Leftrightarrow m+1=3\Leftrightarrow m=2\) (thỏa mãn)

Vậy $m=2$

 Bài 2 bạn xem lại đề bài.

 

a: \(\left|x_1-x_2\right|=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{\left(\dfrac{1}{2}\right)^2-4\cdot\left(-1\right)}=\sqrt{\dfrac{1}{4}+4}\)

\(=\sqrt{\dfrac{17}{4}}\)

=>\(\left[{}\begin{matrix}x_1-x_2=\dfrac{\sqrt{17}}{2}\\x_1-x_2=-\dfrac{\sqrt{17}}{2}\end{matrix}\right.\)

c,d:Vì pt có hai nghiệm trái dấu

nên chắc chắn hai biểu thức này sẽ không tính được vì sẽ có một căn bậc hai mà biểu thức trong căn âm

11 tháng 3 2018

Dùng định lí Viète vào pt cho ta:
\(\left\{{}\begin{matrix}S=x_1+x_2=2\\P=x_1x_2=\dfrac{1}{3}\end{matrix}\right.\)

a) \(A=\left(x_1-1\right)\left(x_2-1\right)=x_1x_2-\left(x_1+x_2\right)+1=-\dfrac{2}{3}\)

b)\(B=x_1\left(x_2-1\right)+x_2\left(x_1-1\right)=2x_1x_2-\left(x_1+x_2\right)=-\dfrac{4}{3}\)

c)\(C=\sqrt{x_1}+\sqrt{x_2}=\sqrt{\left(\sqrt{x_1}+\sqrt{x_2}\right)^2}=\sqrt{x_1+x_2+2\sqrt{x_1x_2}}=\sqrt{2+2\sqrt{\dfrac{1}{3}}}\)

Tới đó hết giải được tiếp :)
d)\(D=x_1\sqrt{x_2}+x_2\sqrt{x_1}=\sqrt{x_1x_2}.\left(\sqrt{x_1}+\sqrt{x_2}\right)\) rồi thế kết quả câu C và biểu thức từ trên.

13 tháng 3 2022

undefined

AH
Akai Haruma
Giáo viên
6 tháng 8 2017

Lời giải:

Điều kiện: \(\Delta'=m^2-4m+7>0\) (luôn đúng)

Áp dụng định lý Viete, nếu $x_1,x_2$ là nghiệm của PT trên thì:

\(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=2m-6\end{matrix}\right.\)

Do đó: \(A=\left ( \frac{x_1}{x_2} \right )^2+\left ( \frac{x_2}{x_1} \right )^2=\left (\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2=\frac{(x_1^2+x_2^2)^2}{(x_1x_2)^2}-2\)

\(A=\left ( \frac{x_1}{x_2} \right )^2+\left ( \frac{x_2}{x_1} \right )^2=\left (\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2\)

\(=\frac{(x_1^2+x_2^2)^2}{(x_1x_2)^2}-2=\frac{[(x_1+x_2)^2-2x_1x_2]^2}{(x_1x_2)^2}-2=\frac{[4(m-1)^2-2(2m-6)]^2}{(2m-6)^2}-2=\frac{16(m-1)^4-16(m-1)^2(2m-6)}{(2m-6)^2}+2\)

Để \(A\in\mathbb{Z}\Rightarrow 16(m-1)^4-16(m-1)^2(2m-6)\vdots (2m-6)^2\)

\(\Leftrightarrow 4(m-1)^4-8(m-1)^2(m-3)\vdots (m-3)^2\)

Xét điều kiện yếu hơn, \(\) \(4(m-1)^4-8(m-1)^2(m-3)\vdots m-3\Leftrightarrow 4(m-1)^4\vdots m-3\)

\(\Leftrightarrow 4[(m-1)^4-2^4]+2^6\vdots m-3\)

\((m-1)^4-2^4\vdots m-3\Rightarrow 2^6\vdots m-3\). Mà \(m\in\mathbb{Z}^+\Rightarrow m-3\in \left \{\pm 1,\pm 2,4,8,16,32,64\right\}\)

Thử lại ta thu được \(m\in \left \{1,2,4, 5,7,11\right\}\)

NV
26 tháng 3 2022

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{3}\\x_1x_2=-2\end{matrix}\right.\)

\(\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)

\(=\dfrac{x_1^2+x_2^2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{\left(-\dfrac{5}{3}\right)^2-2.\left(-2\right)-\left(-\dfrac{5}{3}\right)}{-2-\left(-\dfrac{5}{3}\right)+1}=...\)