Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{14}-\sqrt{13}< 2\sqrt{3}-\sqrt{11}\)
\(\Leftrightarrow\sqrt{14}-\sqrt{13}< \sqrt{12}-\sqrt{11}\)
\(\Leftrightarrow\sqrt{14}+\sqrt{11}< \sqrt{12}+\sqrt{13}\)
\(\Leftrightarrow14+11+2\sqrt{14.11}< 12+13+2\sqrt{12.13}\)
\(\Leftrightarrow25+2\sqrt{154}< 25+2\sqrt{156}\)
\(\Leftrightarrow\sqrt{154}< \sqrt{156}\)(luôn đúng)
Vậy \(\sqrt{14}-\sqrt{13}< 2\sqrt{3}-\sqrt{11}\)
Áp dụng HĐT số 3 ta có :
\(B=\sqrt{14-2\sqrt{3}}+\sqrt{14+2\sqrt{3}}\)
\(=\left(\sqrt{14}\right)^2-\left(2\sqrt{3}\right)^2\)
\(\sqrt{10}+\sqrt{5}+1>\sqrt{9}+\sqrt{4}+1=3+2+1=6=\sqrt{36}>\sqrt{35}\)
\(\Rightarrow\sqrt{10}+\sqrt{5}+1>\sqrt{35}\)
1/ a/ \(\sqrt{\left(6+2\sqrt{5}\right)^3}-\sqrt{\left(6-2\sqrt{5}\right)^3}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^6}-\sqrt{\left(\sqrt{5}-1\right)^6}\)
\(=\left(\sqrt{5}+1\right)^3-\left(\sqrt{5}-1\right)^3\)
\(=32\)
b/ \(\sqrt{\left(3-2\sqrt{2}\right)\left(4-2\sqrt{3}\right)}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2\left(\sqrt{3}-1\right)^2}\)
\(=\left(\sqrt{2}-1\right)\left(\sqrt{3}-1\right)\)
\(=\sqrt{6}-\sqrt{2}-\sqrt{3}+1\)
Câu 3/ \(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}\)
\(< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{4}}}}}=2\)
Ta lại có:
\(A=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+\sqrt{2}}}}}>\sqrt{2}>1\)
\(\Rightarrow1< A< 2\)
Vậy \(A\notin N\)
Đặt Sn=\(\left(2+\sqrt{3}\right)^n+\left(2-\sqrt{3}\right)^n\)
Ta có: \(\left(2+\sqrt{3}\right)\) và \(\left(2-\sqrt{3}\right)\)là nghiệm của phương trình:
x2 - (\(\left(2+\sqrt{3}\right)+\left(2-\sqrt{3}\right)\)) x + (\(\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\)) = 0 <=>
x2-4x+1=0 =>x2 =4x -1 Nhân 2 vế cho xn-2 :
xn=4xn-1 -xn-2
.Thế x = \(\left(2+\sqrt{3}\right)\)được:
\(\left(2+\sqrt{3}\right)^n=4\left(2+\sqrt{3}\right)^{n-1}-\left(2+\sqrt{3}\right)^{n-2}\) (1)
Thế x = \(\left(2-\sqrt{3}\right)\)được:
\(\left(2-\sqrt{3}\right)^n=4\left(2-\sqrt{3}\right)^{n-1}+\left(2-\sqrt{3}\right)^{n-2}\)(2)
\(\left(2+\sqrt{3}\right)^n+\left(2-\sqrt{3}\right)^n=4\cdot\left(\left(2+\sqrt{3}\right)^{n-1}+\left(2-\sqrt{3}\right)^{n-1}\right)-\left(\left(2+\sqrt{3}\right)^{n-2}+\left(2-\sqrt{3}\right)^{n-2}\right)\)
<=> Sn = 4Sn-1-Sn-2 (*)
Ta có S0 = 2 là số chẵn, S1 = 4 là số chẵn => S3 là số chẵn
Tương tự => S4, S5, ... Sn là số chẵn với mọi n >=0 => S2016 = \(\left(2+\sqrt{3}\right)^{2016}+\left(2-\sqrt{3}\right)^{2016}\) là số chẵn (đpcm)