Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCHabM
Mình giải thế này nhé :))
Gọi M là trung điểm của BC => AM là đường trung tuyến của tam giác ABC => \(AM=\frac{1}{2}BC\)(vì tam giác ABC vuông)
Áp dụng hệ thức về cạnh trong tam giác vuông, ta có ; \(AH=\sqrt{ab}\)(1)
Mặt khác, ta cũng có ; \(AH\le AM=\frac{BC}{2}=\frac{a+b}{2}\)(2)
Từ (1) và (2) suy ra được : \(\sqrt{ab}\le\frac{a+b}{2}\)(Đpcm)
ta có lượng \(H^+\) có trong dung dịch là :
\(n_{H^+}=2n_{H_2SO_4}+n_{HCL}=2\times0,2\times1+0,2\times2=0,8\left(mol\right)\)
a. ta có \(n_{H_2}=\frac{1}{2}n_{H^+}=0,4mol\Rightarrow V_{H_2}=22,4\times0,4=8,96\left(lit\right)\)
b. ta có \(m_{\text{hỗn hợp}}+m_{\text{axit }}=m_{\text{chất tan}}+m_{\text{ khí}}\)
nên \(m_{\text{chất tan }}=12,9+0,2\times98+0,4\times36,5-0,4\times2=46,3\left(g\right)\)
Nếu \(a,b,c,d>2\) thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}=1\) (vô lí)
Vậy trong bốn số a,b,c,d tồn tại ít nhất một số không lớn hơn 2
Không mất tính tổng quát, ta giả sử a là số nhỏ nhất, tức \(a\le b,a\le c,a\le d\) \(\Rightarrow a\le2\)
Khi đó \(a=1\) hoặc \(a=2\)
Dễ thấy \(a=1\) không thỏa mãn. Vậy \(a=2\)
Suy ra \(\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=\frac{3}{4}\)
Nếu \(b,c,d>3\) thì \(\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{3^2}=\frac{1}{3}< \frac{3}{4}\) (vô lí)
Vậy trong 3 số b,c,d tồn tại ít nhất một số không lớn hơn 3
Ta giả sử b là số nhỏ nhất \(b\le3\) , khi đó \(b=2\) hoặc \(b=3\) (vì b = 1 không thỏa)
- Nếu \(b=2\) thì \(\frac{1}{c^2}+\frac{1}{d^2}=\frac{1}{2}\)
Dễ thấy nếu \(c,d>2\) thì \(\frac{1}{c^2}+\frac{1}{d^2}>\frac{1}{2}\) (vô lí). Vậy \(c,d\le2\)
Với c = 1 hoặc d = 1 ta thấy ngay điều vô lí.
Với c = 2 thì d = 2 và ngược lại.
- Nếu \(b=3\) thì \(\frac{1}{c^2}+\frac{1}{d^2}=\frac{7}{18}\)
Dễ thấy nếu \(c,d>3\) thì \(\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{3^2}+\frac{1}{3^2}=\frac{2}{9}< \frac{7}{18}\) (vô lí)
Vậy \(c,d\le3\)
Với c = 1 hoặc d = 1 thấy ngay điều vô lí
Với c= 2 thì d = 2 và ngược lại.
Với c = 3 thì d = \(\frac{5}{18}\) (loại vì \(d\notin N\))
Vậy : \(\left(a;b;c;d\right)=\left(2;2;2;2\right)\)
Cách này có vẻ chặt hơn :)
Nếu \(a,b,c,d>2\) thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}=1\) (vô lí)
Vậy trong bốn số a,b,c,d tồn tại ít nhất một số không lớn hơn 2.
Không mất tính tổng quát, ta giả sử a là số lớn nhất, tức \(a\ge b\ge c\ge d\)
\(1=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\ge\frac{4}{a^2}\Rightarrow a^2\ge4\Rightarrow a\ge2\) (Vì a > 0)
Mà \(a\le2\) nên a = 2
\(\Rightarrow\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=\frac{3}{4}\)
Vì \(b\ge c\ge d\) nên \(\frac{3}{4}=\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\ge\frac{3}{b^2}\Rightarrow b^2\ge4\Leftrightarrow b\ge2\) (vì b > 0)
Vậy b = 2
\(\Rightarrow\frac{1}{c^2}+\frac{1}{d^2}=\frac{1}{2}\)
Nếu \(c=1\) thì \(\frac{1}{c^2}+\frac{1}{d^2}=1+\frac{1}{d^2}>\frac{1}{2}\) (vô lý)
Vậy c = 2 => d = 2
Kết luận : (a;b;c;d) = (2;2;2;2)
a+b=25=>a=25-b
ab=156<=>b(25-b)=156
<=>25b-b2-156=0 <=>-(b-12)(b-13)=0<=>b=12 hoặc b=13
thay vào tìm nốt a
Mình biết đáp án là 12 và 13 nhưng không biết cách giải thế nào
n Zn = m / M = 9,75 / 65 = 0,15 ( mol )
Zn + 2HCl --> ZnCl2 + H2
1 2 1 1
0,15 0,3 0,15 0,15
m HCl = n * M = 0,3 * 36,5 = 10,95 ( g )
C% = mct * 100% / mdd
--> mdd = mct * 100% / C% = 10,95 * 100 / 7,3 = 150 ( g)