Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn Đỗ Minh Quang sao nói bạn ý ngu !!! Giỏi thì làm xem
Bài giải :
Một đơn vị diện tích: Thả nn con
Sau thu hoạch, mỗi con nặng 480−20n480−20n
Do đó, sau thu hoạch, một đơn vị diện tích sẽ thu hoạch được số cân cá là:
A=n(480−20n)A=n(480−20n)
Đến đây có thể dùng 2 cách:
Cách 1: Sử dụng BĐT
Ta có 20A=20n(480−20n)20A=20n(480−20n). Áp dụng BĐT Cauchy:
20A≤(20n+480−20n2)2=5760020A≤(20n+480−20n2)2=57600
⇔A≤2880⇔A≤2880. Dấu bằng xảy ra khi 20n=480−20n⇔n=1220n=480−20n⇔n=12
Vậy để thu được sản lượng lớn nhất thì n=12n=12
Cách 2: Sử dụng đạo hàm, xét bảng biến thiên ta cũng thu được Amax⇔n=12
** đăng lẻ ra cho anh em còn kiếm điểm, chứ kiểu này thì chỉ những người rảnh như tôi mới làm, mà những đứa rảnh rỗi sinh nông nổi như thế này rất ít đó**
câu 1: Thể tích hộp: \(\left(\dfrac{12,2}{2}\right)^2\cdot\pi\cdot2,4=\dfrac{11163}{125}\pi\left(cm^3\right)\)
Thể tích 1 miếng phô mai:
\(\dfrac{11163}{125}\pi:8=11,163\pi\left(cm^3\right)\)
câu 2:
a) Xét pt (1): \(\Delta=\left(2m-1\right)^2-16=4m^2-4m-15\)
pt có 2 nghiệm x1, x2 \(\Leftrightarrow\Delta\ge0\Leftrightarrow4m^2-4m-15\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{3}{2}\\m\ge\dfrac{5}{2}\end{matrix}\right.\)
b) Theo định lý Vi-ét:
\(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=4\end{matrix}\right.\)
Vì x1 là nghiệm của (1) nên:
\(x_1^2-\left(2m-1\right)x_1+4=0\Leftrightarrow x_1^2=\left(2m-1\right)x_1-4\)
Ta có: \(x_1^2+\left(2m-1\right)x_2+8-17m=0\)
\(\Leftrightarrow\left(2m-1\right)x_1+\left(2m-1\right)x_2+4-17m=0\)
\(\Leftrightarrow\left(2m-1\right)\left(x_1+x_2\right)+4-17m=0\)
\(\Leftrightarrow\left(2m-1\right)^2+4-17m=0\)
\(\Leftrightarrow4m^2-21m+5=0\Leftrightarrow\left[{}\begin{matrix}m=5\left(N\right)\\m=\dfrac{1}{4}\left(L\right)\end{matrix}\right.\)
KL: m=5
Câu 3: Gọi độ dài 2 cạnh góc vuông là a và a+2 ( a thuộc Z+)
Áp dụng định lý py ta go:
\(a^2+\left(a+2\right)^2=6^2\Leftrightarrow2a^2+4a-32=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-1+\sqrt{17}\left(N\right)\\a=-1-\sqrt{17}\left(L\right)\end{matrix}\right.\)
=> Diện tích tam giác đó: \(\dfrac{1}{2}\cdot\left(-1+\sqrt{17}\right)\cdot\left(-1+\sqrt{17}+2\right)=8\left(cm^2\right)\)
Kl:..........
Câu 4: *năm ngoái:
+ Tổng giá của XĐ và MBH: \(160000+40000=200000\) (đồng)
* năm nay:
+ Giá xe đạp: \(160000+160000\cdot5\%=168000\) (đồng)
+ Giá mũ bảo hiểm: \(40000+40000\cdot10\%=44000\) (đồng)
+ tổng giá của XĐ và MBH: \(168000+44000=212000\) (đồng)
=> tổng giá của xe đạp và mỹ bảo hiểm tăng lên số % là: \(\dfrac{212000-200000}{200000}\cdot100=6\%\)
Do hai con chim vồ mồi cùng 1 lúc và với cùng một vận tốc nên quãng đường bay của 2 con pải như nhau
Gọi khoảng cách của con cá tới 2 gốc cây lần lượt là x,y(x,y>0)
Khoảng cách bay của con 1 là : \(\sqrt{20^2+x^2}\)\
Khoảng cách bay của con thứ 2 là \(\sqrt{30^2+y^2}\)
Do khoảng cách bằng nhau nên ta có pt:
\(\sqrt{30^2+y^2}=\sqrt{20^2+x^2}\)
\(\Leftrightarrow500=x^2-y^2=\left(x+y\right)\left(x-y\right)\)
\(\Leftrightarrow500=50\left(x-y\right)\)(do x+y=50)
\(\Leftrightarrow x-y=10\)
\(\Rightarrow\hept{\begin{cases}x+y=50\\x-y=10\end{cases}\Rightarrow x=30,y=20}\)
Vậy con trên cây cao 30 m có gốc cây cách con cá 20m
con trên cây cao 20m có gốc cây cách con cá 30m
Do hai con chim vồ mồi cùng 1 lúc và với cùng một vận tốc nên quãng đường bay của 2 con pải như nhau
Gọi khoảng cách của con cá tới 2 gốc cây lần lượt là x,y(x,y>0)
Khoảng cách bay của con 1 là : \(\sqrt{20^2+x^2}\)\
Khoảng cách bay của con thứ 2 là \(\sqrt{30^2+y^2}\)
Do khoảng cách bằng nhau nên ta có pt:
\(\sqrt{30^2+y^2}=\sqrt{20^2+x^2}\)
\(\Leftrightarrow500=x^2-y^2=\left(x+y\right)\left(x-y\right)\)
\(\Leftrightarrow500=50\left(x-y\right)\)(do x+y=50)
\(\Leftrightarrow x-y=10\)
\(\Rightarrow\hept{\begin{cases}x+y=50\\x-y=10\end{cases}\Rightarrow x=30,y=20}\)
Vậy con trên cây cao 30 m có gốc cây cách con cá 20m
con trên cây cao 20m có gốc cây cách con cá 30m