K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2015

dấu trừ biến thành dấu cộng

17 tháng 11 2015

khi hiệu biến thành số bị chia

5-4=1

2-1=1

Khi dấu trừ biến thành dấu cộng

4+1=5

1+1=2

21 tháng 7 2021

\(A=x^2+\frac{4}{x^2+1}\)   

\(=x^2+1+\frac{4}{x^2+1}-1\)   

Áp dụng bất đẳng thức cauchy cho 2 số dương x^2 + 1 và 4 / x^2 + 1

\(x^2+1+\frac{4}{x^2+1}\ge2\sqrt{\left(x^2+1\right)\cdot\frac{4}{x^2+1}}\)   

\(x^2+1+\frac{4}{x^2+1}\ge4\)   

\(x^2+1+\frac{4}{x^2+1}-1\ge3\)   

\(A\ge3\)   

Dấu = xảy ra khi và chỉ khi 

\(x^2+1=\frac{4}{x^2+1}\)   

\(\left(x^2+1\right)^2=4\)   

\(\orbr{\begin{cases}x^2+1=2\\x^2+1=-2\end{cases}}\)   

\(\orbr{\begin{cases}x^2=1\\x^2=-3\left(sai\right)\end{cases}}\)   

\(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)   

Vậy A > 3 khi x khác 1 và - 1 

A = 3 khi x = 1 hay x = - 1 

A < 3 vô nghiệm 

20 tháng 7 2021

\(a,\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{4}{2+a+b}\)( BĐT cô-si dạng engel)

\(\frac{4}{2+a+b}\le\frac{4}{2+2\sqrt{ab}}=\frac{2}{1+\sqrt{ab}}=VP\)(bđt tương đương)

vậy cả hai bđt dấu "=" xảy ra đồng thời

\(\hept{\begin{cases}\frac{1}{1+a}=\frac{1}{1+b}\\a=b=1\end{cases}}\)

vậy \(\frac{1}{1+a}+\frac{1}{1+b}=\frac{2}{1+\sqrt{ab}}\)khi \(a=b=1\)

\(b,\)\(\frac{1}{1+a}+\frac{1}{1+b}>\frac{2}{1+\sqrt{ab}}\)khi và chỉ khi bđt cô -si không xảy ra dấu bằng

và bđt tương đương xảy ra dấu bằng

\(\hept{\begin{cases}\frac{1}{1+a}+\frac{1}{1+b}>\frac{4}{2+a+b}\\\frac{4}{2+a+b}=\frac{2}{1+\sqrt{ab}}\end{cases}}\)

\(\hept{\begin{cases}\frac{2+a+b}{1+a+b+ab}>\frac{4}{2+a+b}\\4+4\sqrt{ab}=4+2a+2b\end{cases}}\)

\(\hept{\begin{cases}4+a^2+b^2+4a+4b+2ab>4+4a+4a+4ab\\2\sqrt{ab}=a+b\end{cases}}\)

\(\hept{\begin{cases}a^2+b^2>2ab\\a^2+b^2=0\end{cases}}\)

\(0>2ab\)

\(ab< 0\)

rồi chia ra từng TH 

ra đc \(TH1:\hept{\begin{cases}a< 0\\b>0\end{cases}}\)

\(TH2:\hept{\begin{cases}a>0\\b< 0\end{cases}}\)

\(c,\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)khi và chỉ khi 

bđt cô- si dạng engel lớn hơn hoặc bằng còn bđt tương đương thì dấu bằng xảy ra

\(\hept{\begin{cases}\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{4}{2+a+b}\\\frac{4}{2+a+b}=\frac{2}{1+\sqrt{ab}}\end{cases}}\)

\(\hept{\begin{cases}a^2+b^2\ge2ab\\a^2+b^2=0\end{cases}}\)

\(< =>0\ge2ab\)

vì đề bài cho \(a,b>0\)lên dấu bằng không xảy ra

vậy không có giá trị a,b nào thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)

câu d lập luận như các câu trên cậu làm nốt nha

22 tháng 3 2021

1) a2 - ab + b2 ≥ 0

<=> ( 4a2 - 4ab + b2 ) + 3b2 ≥ 0

<=> ( 2a - b )2 + 3b2 ≥ 0 ( đúng ∀ a,b )

Vậy bđt ban đầu được chứng minh

Đẳng thức xảy ra <=> a = b = 0

2) a2 - ab + b2 ≥ 1/4( a + b )2

<=> 4a2 - 4ab + 4b2 ≥ a2 + 2ab + b2

<=> 4a2 - 4ab + 4b - a2 - 2ab - b2 ≥ 0

<=> 3a2 - 6ab + 3b2 ≥ 0

<=> a2 - 2ab + b2 ≥ 0

<=> ( a - b )2 ≥ 0 ( đúng ∀ a,b )

Vậy bđt ban đầu được chứng minh

Đẳng thức xảy ra <=> a = b 

3 tháng 12 2018

sai đề

Tớ là nữ đây. Có đc hông thế?

25 tháng 8 2019

1+1=3 khi làm sai.

Có đúng ko?

1 + 1 = 3 vì:

1 + 1 = 1 đôi = 1 + 2 (đôi là 2) = 3

Cách này mình tự chế thôi, còn cách khác nữa:

Bạn đếm ngón tay là biết

1 ngón tay là 1, dấu cộng ở khe ngón tay, thêm ngón tay nữa là 2, dấu bằng ở khe ngón tay là ra ngón thứ 3

=> 1 + 1 = 3

22 tháng 4 2016

sai đề rồi

11 tháng 8 2020

nếu trong biểu thức thì viết như này , còn trình bày thì anh kid đã làm rồi

a, \(đk:x>2\)

b, \(đk:x\ge0;x\ne9\)

10 tháng 8 2020

a)

Các biểu thức sau có nghĩa khi \(\frac{1}{x^2-4}>0;x^2-4\ne0\Rightarrow x>2\)

b)

Biểu thức có nghĩa khi \(x\ge0;x\ne9\)