K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 + 1 = 3 vì:

1 + 1 = 1 đôi = 1 + 2 (đôi là 2) = 3

Cách này mình tự chế thôi, còn cách khác nữa:

Bạn đếm ngón tay là biết

1 ngón tay là 1, dấu cộng ở khe ngón tay, thêm ngón tay nữa là 2, dấu bằng ở khe ngón tay là ra ngón thứ 3

=> 1 + 1 = 3

22 tháng 4 2016

sai đề rồi

Tớ là nữ đây. Có đc hông thế?

25 tháng 8 2019

1+1=3 khi làm sai.

Có đúng ko?

21 tháng 7 2021

\(A=x^2+\frac{4}{x^2+1}\)   

\(=x^2+1+\frac{4}{x^2+1}-1\)   

Áp dụng bất đẳng thức cauchy cho 2 số dương x^2 + 1 và 4 / x^2 + 1

\(x^2+1+\frac{4}{x^2+1}\ge2\sqrt{\left(x^2+1\right)\cdot\frac{4}{x^2+1}}\)   

\(x^2+1+\frac{4}{x^2+1}\ge4\)   

\(x^2+1+\frac{4}{x^2+1}-1\ge3\)   

\(A\ge3\)   

Dấu = xảy ra khi và chỉ khi 

\(x^2+1=\frac{4}{x^2+1}\)   

\(\left(x^2+1\right)^2=4\)   

\(\orbr{\begin{cases}x^2+1=2\\x^2+1=-2\end{cases}}\)   

\(\orbr{\begin{cases}x^2=1\\x^2=-3\left(sai\right)\end{cases}}\)   

\(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)   

Vậy A > 3 khi x khác 1 và - 1 

A = 3 khi x = 1 hay x = - 1 

A < 3 vô nghiệm 

17 tháng 11 2015

dấu trừ biến thành dấu cộng

17 tháng 11 2015

khi hiệu biến thành số bị chia

5-4=1

2-1=1

Khi dấu trừ biến thành dấu cộng

4+1=5

1+1=2

3 tháng 9 2017

Cho abc=1 va a3>36.CMR:a23+b2+c2>ab+bc+ca}

Lời giải:

VT−VP=a24+b2+c2−ab−bc+2bc+a212=(a2−b−c)2+a2−36bc12>0⇒ đpcm

Cách khác:

Từ giả thiết suy ra a>0 và bc>0. Bất đẳng thức cần chứng minh tương đương với

a23+(b+c)2−3bc−a(b+c)≥0⟺13+(b+ca)2−b+ca−3a3≥0

Vì a3>36 nên

20 tháng 7 2021

\(a,\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{4}{2+a+b}\)( BĐT cô-si dạng engel)

\(\frac{4}{2+a+b}\le\frac{4}{2+2\sqrt{ab}}=\frac{2}{1+\sqrt{ab}}=VP\)(bđt tương đương)

vậy cả hai bđt dấu "=" xảy ra đồng thời

\(\hept{\begin{cases}\frac{1}{1+a}=\frac{1}{1+b}\\a=b=1\end{cases}}\)

vậy \(\frac{1}{1+a}+\frac{1}{1+b}=\frac{2}{1+\sqrt{ab}}\)khi \(a=b=1\)

\(b,\)\(\frac{1}{1+a}+\frac{1}{1+b}>\frac{2}{1+\sqrt{ab}}\)khi và chỉ khi bđt cô -si không xảy ra dấu bằng

và bđt tương đương xảy ra dấu bằng

\(\hept{\begin{cases}\frac{1}{1+a}+\frac{1}{1+b}>\frac{4}{2+a+b}\\\frac{4}{2+a+b}=\frac{2}{1+\sqrt{ab}}\end{cases}}\)

\(\hept{\begin{cases}\frac{2+a+b}{1+a+b+ab}>\frac{4}{2+a+b}\\4+4\sqrt{ab}=4+2a+2b\end{cases}}\)

\(\hept{\begin{cases}4+a^2+b^2+4a+4b+2ab>4+4a+4a+4ab\\2\sqrt{ab}=a+b\end{cases}}\)

\(\hept{\begin{cases}a^2+b^2>2ab\\a^2+b^2=0\end{cases}}\)

\(0>2ab\)

\(ab< 0\)

rồi chia ra từng TH 

ra đc \(TH1:\hept{\begin{cases}a< 0\\b>0\end{cases}}\)

\(TH2:\hept{\begin{cases}a>0\\b< 0\end{cases}}\)

\(c,\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)khi và chỉ khi 

bđt cô- si dạng engel lớn hơn hoặc bằng còn bđt tương đương thì dấu bằng xảy ra

\(\hept{\begin{cases}\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{4}{2+a+b}\\\frac{4}{2+a+b}=\frac{2}{1+\sqrt{ab}}\end{cases}}\)

\(\hept{\begin{cases}a^2+b^2\ge2ab\\a^2+b^2=0\end{cases}}\)

\(< =>0\ge2ab\)

vì đề bài cho \(a,b>0\)lên dấu bằng không xảy ra

vậy không có giá trị a,b nào thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)

câu d lập luận như các câu trên cậu làm nốt nha

khi mk tính sai hã :)))) v~~

18 tháng 3 2019

Nhớ nhé, khi mk cộng những thứ ko đếm đc ! Bye mn nhá .

22 tháng 1 2019

x khác 0,1,-3

23 tháng 1 2019

Có nghĩa khi:

\(x\ne0;x+3\ne0;\frac{x-1}{x^2\left(x+3\right)}\ge0\)

\(\Leftrightarrow x\ne0;x\ne-3;\orbr{\begin{cases}x< -3\\x\ge1\end{cases}}\)