K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2015

gọi thời gian người thứ nhất làm xong công việc là x (h), x>6

 thời gian người thứ 2 làm xong công việc là y(h) , y>6

trong 1h người thứ nhất và ng thứ 2 làm được khối lượng cv tương ứng là: 1/x và 1/y

vì hai người làm chung trong 6h thì xong nên có pt: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{6}\)(1)

sau 3h20'= 10/3 h người thứ nhất làm được 10/3x công việc, sau 10h người thứ 2 làm được 10/y công việc thì hoàn thành công viejc nên có: \(\frac{10}{3x}+\frac{10}{y}=1\)(2)

giải hệ gồm (1) và (2) được x=10, y=15 h

24 tháng 2 2019

Gọi x,y(h) lần lượt thời gian làm riêng xong cv của người 1 và 2(x,y>0)

Trong 1h người 1 làm được 1/x công việc

Trong 1h người 2 làm được 1/y công việc 

Trong 1h 2 người làm chung được 1/16 công việc 

Ta có pt1:  1/x   +   1/y  =   1/16

Trong 3h người 1 làm được 3/x công việc

Trong 6h người 2 làm được 6/y công việc

Ta có pt2:   3/x    +     6/y      =1/4

DONE

Hệ bạn tự giải nha

25 tháng 1 2017

24 gio thi xong

bai nay lop 5

tk minh nha

happy new year

25 tháng 1 2017

Nhưng bài này là giải bài toán bằng cách lập hệ phương trình, không phải giải theo cấp 1

25 tháng 8 2016

Giả sử nếu làm riêng thì người thứ nhất hoàn thành công việc  trong x giờ, người thứ hai trong y giờ. Điều kiện x > 0, y > 0.

Trong 1 giờ người thứ nhất làm được \(\frac{1}{x}\) công việc, người thứ hai \(\frac{1}{y}\) công việc, cả hai người cùng làm chung thì được \(\frac{1}{16}\) công việc.

Ta được \(\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\) +  = .

Trong 3 giờ, người thứ nhất làm được \(\frac{3}{x}\) công việc, trong 6 giờ người thứ hai làm được \(\frac{6}{y}\) công việc, cả hai người làm được 25% công việc hay \(\frac{1}{4}\) công việc.

Ta được \(\frac{3}{x}+\frac{6}{y}=\frac{1}{4}\)

Ta có hệ phương trình: \(\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\\\frac{3}{x}+\frac{6}{y}=\frac{1}{4}\end{cases}\).

Giải ra ta được x = 24, y = 48.

Vậy người thứ nhất 24 giờ, người thứ hai 48 giờ

 

13 tháng 2 2019

Gọi thời gian người thứ nhất làm một mình để hoàn thành công việc là x (giờ) (x > 0).

Gọi thời gian người thứ hai làm một mình để hoàn thành công việc là y (giờ) y > 0).

Vì cả hai người cùng làm sẽ hoàn thành công việc trong 16 giờ nên ta có phương trình

\(16\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\)(1)

Vì người thứ nhất làm trong 3 giờ, người thứ hai làm trong 6 giờ thì hoàn thành \(25\%=\dfrac{1}{4}\) công việc nên ta có phương trình: \(3.\dfrac{1}{x}+6.\dfrac{1}{y}=\dfrac{1}{4}\)(2)

Từ (1) và (2) ta có hệ phương trình:\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\3.\dfrac{1}{x}+6.\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3.\dfrac{1}{x}+3.\dfrac{1}{y}=\dfrac{3}{16}\\3.\dfrac{1}{x}+6.\dfrac{1}{y}=\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3.\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{48}\\\dfrac{1}{x}+\dfrac{1}{48}=\dfrac{1}{16}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{48}\\\dfrac{1}{x}=\dfrac{1}{24}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=48\left(TM\right)\\x=24\left(TM\right)\end{matrix}\right.\)

Vậy nếu làm riêng, người thứ nhất hoàn thành công việc sau 24 giờ và người thứ hai hoàn thành công việc trong 48 giờ.

31 tháng 5 2021

Gọi thời gian để người thứ nhất, người thứ hai làm xong công việc lần lượg là x, y (giờ; x, y \(\in\) N*)

Khi đó trong mỗi giờ người thứ nhất làm được \(\dfrac{1}{x}\) công việc, người thứ hai làm được \(\dfrac{1}{y}\) công việc.

Theo bài ra ta có: \(\left\{{}\begin{matrix}\dfrac{16}{x}+\dfrac{16}{y}=1\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\).

Giải ra ta có \(\dfrac{1}{x}=\dfrac{1}{24};\dfrac{1}{y}=\dfrac{1}{48}\Rightarrow x=24;y=48\) (TMĐK)

Vậy....

31 tháng 5 2021

bài/này/ko/làm/bằng/cách/lập/phương/trình/được/ạ

31 tháng 1 2021

Gọi thời gian tổ 1 làm một mình xong công việc là x(h); thời gian tổ 1 làm một mình xong công việc là y(h)  (ĐK: x, y > 0)

Một giờ tổ 1 làm được: \(\dfrac{1}{x}\) (Công việc)

Một giờ tổ 2 làm được: \(\dfrac{1}{y}\) (Công việc)

Một giờ cả hai tổ làm được: \(\dfrac{1}{12}\) (Công việc)

Vì một giờ cả hai tổ làm được \(\dfrac{1}{12}\) công việc nên ta có pt:

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\) (1)

Tổ 1 làm chung với tổ 2 trong 4 giờ thì phải đi làm việc khác nên tổ 1 làm được: \(\dfrac{4}{x}\) (Công việc)

Tổ 2 làm chung với tổ 1 trong 4 giờ và làm xong công việc còn lại trong 10 giờ nên tổ 2 làm được: \(\dfrac{4}{y}+\dfrac{10}{y}=\dfrac{14}{y}\) (Công việc)

Vì hai tổ làm xong 1 công việc nên ta có pt:

\(\dfrac{4}{x}+\dfrac{14}{y}=1\) (2)

Từ (1) và (2) ta có hpt:

(I) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{4}{x}+\dfrac{14}{y}=1\end{matrix}\right.\)

Giải hpt:

(I) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{4}{y}=\dfrac{1}{3}\\\dfrac{4}{x}+\dfrac{14}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-\dfrac{10}{y}=\dfrac{-2}{3}\\\dfrac{4}{x}+\dfrac{14}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=15\\\dfrac{4}{x}+\dfrac{14}{15}=1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=15\\\dfrac{4}{x}=\dfrac{1}{15}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=60\\y=15\end{matrix}\right.\) (TM)

Vậy tổ 1 làm một mình trong 60h thì xong công việc đó

tổ 2 làm một mình trong 15h thì xong công việc đó

Chúc bn học tốt!

 

31 tháng 1 2021

Gọi thời gian tổ 1 làm một mình xong công việc là x(h); thời gian tổ 1 làm một mình xong công việc là y(h)  (ĐK: x, y > 0)

Một giờ tổ 1 làm được: 1x1x (Công việc)

Một giờ tổ 2 làm được: 1y1y (Công việc)

Một giờ cả hai tổ làm được: 112112 (Công việc)

Vì một giờ cả hai tổ làm được 112112 công việc nên ta có pt:

1x+1y=1121x+1y=112 (1)

Tổ 1 làm chung với tổ 2 trong 4 giờ thì phải đi làm việc khác nên tổ 1 làm được: 4x4x (Công việc)

Tổ 2 làm chung với tổ 1 trong 4 giờ và làm xong công việc còn lại trong 10 giờ nên tổ 2 làm được: 4y+10y=14y4y+10y=14y (Công việc)

Vì hai tổ làm xong 1 công việc nên ta có pt:

4x+14y=14x+14y=1 (2)

Từ (1) và (2) ta có hpt:

(I) ⎪ ⎪ ⎪⎪ ⎪ ⎪1x+1y=1124x+14