Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử /x/ + x
TH1: x>0 => /x/+x=x+x=2x
TH2: x< hoặc =0 => /x/+x=0
=> /x/+x chẵn
=> /n-2016/ + n-2016 chẵn
=> 2^m +2015 chẵn
Mà 2015 lẻ => 2^m lẻ => m=0
thay vào .............
n=3024
m=0
* n = 3k
A = 2ⁿ - 1 = 2^3k - 1 = 8^k - 1 = (8-1)[8^(k-1) + 8^(k-2) +..+ 8 + 1] = 7p chia hết cho 7
* n = 3k+1
A = 2^(3k+1) -1 = 2.2^3k - 1 = 2(8^k - 1) + 1 = 2*7p + 1 chia 7 dư 1
* n = 3k+2
A = 2^(3k+2) -1 = 4.8^k -1 = 4(8^k - 1) + 3 = 4*7p + 3 chia 7 dư 3
Tóm lại A = 2ⁿ -1 chia hết cho 7 khi và chỉ khi n = 3k (k nguyên dương)
giả sử /x/ + x
TH1: x>0 => /x/+x=x+x=2x
TH2: x< hoặc =0 => /x/+x=0
=> /x/+x chẵn
=> /n-2016/ + n-2016 chẵn
=> 2^m +2015 chẵn
Mà 2015 lẻ => 2^m lẻ => m=0
thay vào .............
n=3024
m=0
học tốt
2m + 2015 = |n - 2016| + n - 2016
=> Ta có 2 trường hợp:
+/ 2m + 2015 = (n - 2016) + n - 2016
=> 2m + 2015 = n - 2016 + n - 2016
=> 2m + 2015 = 2n - 4032 (1)
Ta có 2n là số chẵn, -4032 cũng là số chẵn (2)
Từ (1) và (2) => 2m + 2015 là số chẵn
Mà 2015 là số lẻ nên 2m là số lẻ => m = 0
Thay m = 0 vào biểu thức 2m + 2015 = 2n - 4032, ta có:
20 + 2015 = 2n - 4032
=> 1 + 2015 = 2n - 4032
=> 1 + 2015 + 4032 = 2n
=> 6048 = 2n
=> 3024 = n hay n = 3024
+/ 2m + 2015 = -(n - 2016) + n - 2016
=> 2m + 2015 = -n + 2016 + n - 2016
=> 2m + 2015 = 0
=> 2m = -2015
⇒2m∉∅⇒m∉∅
2b nhé bạn!
Giả sử 2002+n2 là số chính phương m2
Hiển nhiên 2002 chia cho 4 dư 2
Ta luôn biết số chính phương chỉ có dạng 4k hoặc 4k+1 (*)
- Nếu m2 dạng 4k
Thì n2 dạng 4k+2 thì theo (*) đây không là số chính phương
- Nếu m2 dạng 4k+1
Thì n2 dạng 4k+3 thì theo (*) ta lại thấy đây không là số chính phương
Vậy không tồn tại n để 2002+n2 là số chính phương
Câu hỏi của trần như - Toán lớp 7 - Học toán với OnlineMath
Bài 1 em tham khảo tại link trên nhé.