Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tú mà không làm được câu này á :))
( x - 6 )( x - 7 )( x - 8 )( x - 9 ) - 8
= [ ( x - 6 )( x - 9 ) ][ ( x - 7 )( x - 8 ) ] - 8
= ( x2 - 15x + 54 )( x2 - 15x + 56 ) - 8 (*)
Đặt t = x2 - 15x + 54
(*) <=> t( t + 2 ) - 8
= t2 + 2t - 8
= ( t - 2 )( t + 4 )
= ( x2 - 15x + 52 )( x2 - 15x + 58 )
=> [ ( x - 6 )( x - 7 )( x - 8 )( x - 9 ) - 8 ] : ( x2 - 15x + 100 )
= ( x2 - 15x + 52 )( x2 - 15x + 58 ) : ( x2 - 15x + 100 )
Đặt y = x2 - 15x + 100
Ta có được phép chia ( y - 48 )( y - 42 ) : y
= y2 - 90y + 2016 : y
= [ ( x2 - 15x + 100 )2 - 90( x2 - 15x + 100 ) + 2016 ] : ( x2 - 15x + 100 )
Đến đây thì quá dễ rồi :)) dư 2016 nhá
Ta có \(F\left(x\right)=g\left(x\right).\left(x+1\right)+4\)
Giả sử \(g\left(x\right)=r\left(x\right).\left(x^2+1\right)+ax+b\)
Suy ra \(F\left(x\right)=r\left(x\right).\left(x+1\right)\left(x^2+1\right)+\left(ax+b\right)\left(x+1\right)+4\)
Đa thức dư là \(h\left(x\right)=\left(ax+b\right)\left(x+1\right)+4\) ta có \(h\left(x\right)=ax^2+\left(a+b\right)x+\left(b+4\right)\)
Theo giả thiết \(h\left(x\right)\) chia \(\left(x^2+1\right)\) dư \(2x+3\)
\(h\left(x\right)=a\left(x^2+1\right)+\left(a+b\right)x+\left(b-a+4\right)\)
\(\Rightarrow\)\(\hept{\begin{cases}a+b=2\\b-a+4=3\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=\frac{3}{2}\\b=\frac{1}{2}\end{cases}}\)
Vậy đa thức dư là \(h\left(x\right)=\left(\frac{3}{2}x+\frac{1}{2}\right)\left(x+1\right)+4\)
Ta có f(x) chia cho x + 1 dư 4 nên theo bê-du ta có: f(-1) = 4 (1)
Khi chi f(x) cho (x + 1)(x2 + 1) thì phần dư phải là đa thức bậc 2 hay
f(x) = (x + 1)(x2 + 1)Q(x) + ax2 + bx + c
= (x + 1)(x2 + 1)Q(x) + a(x2 + 1)+ bx + c - a
= (x2 + 1)[(x + 1)Q(x) + a] + bx + c - a (2)
Mà f(x) chia cho x2 + 1 dư 2x + 3 (3)
Từ (1), (2), (3) ta suy ra hệ
\(\hept{\begin{cases}b=2\\c-a=3\\a-b+c=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=2\\a=\frac{3}{2}\\c=\frac{9}{2}\end{cases}}\)
Vậy đa thức dư cần tìm là: \(\frac{3}{2}x^2+2x+\frac{9}{2}\)
Có :
A(x) = (x^4-3x^3+a^2)-(a^2-ax-b)
= x^2.(x^2-3x+a)-(a^2-ax-b)
=> để A(x) chia hết cho x^2-3x+a thì :
a=0 ; b=0
Vậy a=b=0
Tk mk nha
Có :
A(x) = (x^4-3x^3+a^2)-(a^2-ax-b)
= x^2.(x^2-3x+a)-(a^2-ax-b)
=> để A(x) chia hết cho x^2-3x+a thì :
a=0 ; b=0
Vậy a=b=0
:4
Cách 1. Sử dụng định lí Bezout :
Vì f(x) chia hết cho g(x) nên ta có thể biểu diễn thành : \(f\left(x\right)=g\left(x\right).g'\left(x\right)\) với g'(x) là đa thức thương
hay \(f\left(x\right)=\left(x-1\right)\left(x-2\right).g'\left(x\right)\)
Khi đó , theo định lí Bezout ta có \(\hept{\begin{cases}f\left(1\right)=a+b=0\\f\left(2\right)=7+4a+2b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a+b=0\\4a+2b=-7\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{7}{2}\\b=\frac{7}{2}\end{cases}}\)
Cách 2. Sử dụng HỆ SỐ BẤT ĐỊNH
Giả sử \(f\left(x\right)=x^3+ax^2+bx-1=\left(x^2-3x+2\right).\left(x+c\right)\)(Vì bậc cao nhất của f(x) là 3)
\(\Rightarrow x^3+ax^2+bx-1=x^3+x^2\left(c-3\right)+x\left(2-3c\right)+2c\)
Theo hệ số bất định thì \(\hept{\begin{cases}2c=-1\\2-3c=b\\c-3=a\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-\frac{1}{2}\\b=\frac{7}{2}\\a=-\frac{7}{2}\end{cases}}\)
Ban dung phuong phap the ban cho x= 1 di roi the vao ta duoc so du la 0 roi the tiep x=x+1=1+1=2 tiep tuc duoc du =0 vay =>>>>>voi moi x thi dc so du luon bang 0