Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số có hai chữ số đó là \(\overline{ab}\) ta có
\(\hept{\begin{cases}a-b=2\\\overline{a0b}-\overline{ab}=630\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=2\\100a+b-10a-b=630\end{cases}\Leftrightarrow}\hept{\begin{cases}a=7\\b=5\end{cases}}}\)
Vậy số đó là\(75\)
Lời giải:
Gọi số cần tìm là $\overline{ab}$. Điều kiện:.......
Theo bài ra ta có:
$a+2b=12(1)$
$\overline{a0b}-\overline{ab}=180$
$\Leftrightarrow 100a+b-(10a+b)=180$
$\Leftrightarrow 90a=180$
$\Leftrightarrow a=2(2)$
Từ $(1); (2)\Rightarrow b=5$
Vậy số cần tìm là $25$
Gọi số cần tìm là ab ( có gạch ngang trên đầu)
Theo bài ra ta có: a - b =5 (1)
nếu viết xen chữ số 0 vào giữa số hàng chục và hàng đơn vị thì số mới là: a0b ( có gạch ngang trên đầu)
=> a0b - ab = 630
=> 100a + 0 + b - 10a - b = 630
=> 90a = 630
=> a = 7
Thay a = 7 vào (1) ta đc b=2
Vậy số cần tìm là 72
học tốt
Gọi số cần tìm là ab, ta có:
ab + 630 = a0b
a x 10 + b + 630 = a x 100 + b
b + 630 - b = a x 100 - a x 10
630 = a x 90 \(\Rightarrow a=7\)
\(\Rightarrow b=7-5=2\)
Vậy số cần tìm là 72.
Gọi chữ số hàng chục của số cần tìm là a, chữ số hàng đơn vị của số cần tìm là b (a thuộc N*, b thuộc n)
Khi đó, số cần tìm có dạng: 10a+b
Nếu viết thêm chữ số hạng chục vào bên phải số cần tìm thì khi đó số mới có dạng: 100a+ 10b+a=101a+10b
Mà số mới này hơn số đã cho 682 đơn vị
=>101a+10b-10a-b=682
<=>91a+9b=682 (1)
Theo đề ta có: a-b=2 <=>b=a-2(2)
Thay (2) vào (1) ta được:
91a+9 (a-2)=682
<=>100a=700
<=>a=7(thỏa điều kiện)
=> b=a-2=7-2=5 (thỏa điều kiện)
Vậy,số đã cho là 75
Gọi số cần tìm là ab .Theo đề bài ta có b= a-2
aba - ab = 682
101a+10b-10a-b=682
91a+9b=682
91a+9(a-2)=682
100a=682+18
100a=700
a=7 => b=5
Vậy số cần tìm là 75
Gọi \(\overline{xy}\)là số cân nặng của anh Minh\((x\inℕ^∗,1\le x\le9;y\inℕ,0\le y\le9)\).
Ta có: \(\overline{xy}=10x+y\)
Vì chữ số hàng chục lớn hơn hàng đơn vị là 2, ta có phương trình: \(x=y+2\left(1\right)\)
Vì tăng chữ số hàng chục 4 đơn vị, hàng đơn vị 5 đơn vị thì tích 2 chữ số vừa thu được lớn hơn số đã cho 19 đơn vị, ta có phương trình: \(\left(x+4\right)\left(y+5\right)-19=10x+y\left(2\right)\)
Từ (1) và (2) ta có hệ: \(\hept{\begin{cases}x=y+2\\\left(x+4\right)\left(y+5\right)-19=10x+y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+2\\xy+4y+5x+20-19-10x-y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+2\\xy+3y-5x+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+2\\\left(y+2\right)y+3y-5\left(y+2\right)+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+2\\y^2+2y+3y-5y-10+1=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y+2\\y^2-9=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=3\end{cases}}}\)
\(\Rightarrow\overline{xy}=53\)
Vậy anh Minh nặng 53kg.
Độ dài cạnh huyền là: \(\sqrt{8^2+15^2}=17\left(dm\right)\)
Vậy anh Minh cao 1,7m.
\(BMI=\frac{53}{1,7.1,7}=18,3< 18.5\)
Anh Minh gầy.
\(\Leftrightarrow\hept{\begin{cases}x=y+2\\y^2-9=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y+2\\\orbr{\begin{cases}y=3\\y=-3\left(loai\right)\end{cases}}\end{cases}}}\Leftrightarrow\hept{\begin{cases}x=5\\y=3\end{cases}}\)