Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(I=\int\limits^1_0\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}dx+\int\limits^{+\infty}_1\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}dx=I_1+I_2\)
Do hàm \(f\left(x\right)=\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}\) liên tục và xác định trên \(\left[0;1\right]\) nên \(I_1\) là 1 tích phân xác định hay \(I_1\) hội tụ
Xét \(I_2\) , ta có \(f\left(x\right)=\dfrac{x+1}{\left(x^2+1\right)\sqrt{x^3+1}}>0\) với mọi \(x\ge1\)
Đặt \(g\left(x\right)=\dfrac{1}{x^2\sqrt{x}}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{\left(x+1\right)x^2\sqrt{x}}{\left(x^2+1\right)\sqrt{x^3+1}}=1\) (1)
\(\int\limits^{+\infty}_1g\left(x\right)dx=\int\limits^{+\infty}_1\dfrac{1}{x^2\sqrt{x}}dx\) hội tụ do \(\alpha=\dfrac{5}{2}>1\) (2)
(1);(2) \(\Rightarrow I_2\) hội tụ
\(\Rightarrow I\) hội tụ
a)
Ta có \(A=\int ^{\frac{\pi}{4}}_{0}\cos 2x\cos^2xdx=\frac{1}{4}\int ^{\frac{\pi}{4}}_{0}\cos 2x(\cos 2x+1)d(2x)\)
\(\Leftrightarrow A=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos x(\cos x+1)dx=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos xdx+\frac{1}{8}\int ^{\frac{\pi}{2}}_{0}(\cos 2x+1)dx\)
\(\Leftrightarrow A=\frac{1}{4}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin x+\frac{1}{16}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin 2x+\frac{1}{8}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|x=\frac{1}{4}+\frac{\pi}{16}\)
b)
\(B=\int ^{1}_{\frac{1}{2}}\frac{e^x}{e^{2x}-1}dx=\frac{1}{2}\int ^{1}_{\frac{1}{2}}\left ( \frac{1}{e^x-1}-\frac{1}{e^x+1} \right )d(e^x)\)
\(\Leftrightarrow B=\frac{1}{2}\left.\begin{matrix} 1\\ \frac{1}{2}\end{matrix}\right|\left | \frac{e^x-1}{e^x+1} \right |\approx 0.317\)
c)
Có \(C=\int ^{1}_{0}\frac{(x+2)\ln(x+1)}{(x+1)^2}d(x+1)\).
Đặt \(x+1=t\)
\(\Rightarrow C=\int ^{2}_{1}\frac{(t+1)\ln t}{t^2}dt=\int ^{2}_{1}\frac{\ln t}{t}dt+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
\(=\int ^{2}_{1}\ln td(\ln t)+\int ^{2}_{1}\frac{\ln t}{t^2}dt=\frac{\ln ^22}{2}+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=\frac{dt}{t^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=\frac{-1}{t}\end{matrix}\right.\Rightarrow \int ^{2}_{1}\frac{\ln t}{t^2}dt=\left.\begin{matrix} 2\\ 1\end{matrix}\right|-\frac{\ln t+1}{t}=\frac{1}{2}-\frac{\ln 2 }{2}\)
\(\Rightarrow C=\frac{1}{2}-\frac{\ln 2}{2}+\frac{\ln ^22}{2}\)
Câu nào mình biết thì mình làm nha.
1) Đổi thành \(\dfrac{y^4}{4}+y^3-2y\) rồi thế số.KQ là \(\dfrac{-3}{4}\)
2) Biến đổi thành \(\dfrac{t^2}{2}+2\sqrt{t}+\dfrac{1}{t}\) và thế số.KQ là \(\dfrac{35}{4}\)
3) Biến đổi thành 2sinx + cos(2x)/2 và thế số.KQ là 1
Câu a)
Đặt \(y=\sqrt{t}\Rightarrow I_1=\int ^{1}_{0}(y-1)^2\sqrt{y}dy=\int ^{1}_{0}(t^2-1)^2td(t^2)\)
\(\Leftrightarrow I_1=2\int^{1}_{0}(t^2-1)^2t^2dt=2\int ^{1}_{0}(t^6-2t^4+t^2)dt\)
\(=2\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{t^7}{7}-\frac{2t^5}{5}+\frac{t^3}{3} \right )=\frac{16}{105}\)
b) Đặt \(u=\sqrt[3]{z-1}\Rightarrow z=u^3+1\Rightarrow I_2=\int ^{1}_{0}[(u^3+1)^2+1]u^2d(u^3+1)\)
\(\Leftrightarrow I_2=3\int ^{1}_{0}[(u^3+1)^2+1]u^4du=3\int ^{1}_{0}(u^{10}+2u^7+2u^4)du\)
\(=3\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{x^{11}}{11}+\frac{x^8}{4}+\frac{2x^5}{5} \right )=\frac{489}{220}\)
c) Ta có:
\(I_3=\int ^{e}_{1}\frac{\sqrt{4+5\ln x}}{x}dx=\int ^{e}_{1}\sqrt{4+5\ln x}d(\ln x)\)
Đặt \(\sqrt{4+5\ln x}=t\Rightarrow I_3=\int ^{3}_{2}td\left (\frac{t^2-4}{5}\right)=\frac{2}{5}\int ^{3}_{2}t^2dt=\frac{38}{15}\)
d)
Xét \(\int ^{\frac{\pi}{2}}_{0}\cos ^5xdx=\int ^{\frac{\pi}{2}}_{0}\cos ^4xd(\sin x)=\int ^{\frac{\pi}{2}}_{0}(1-\sin ^2x)^2d(\sin x)\)
\(=\int ^{1}_{0}(1-t^2)^2dt\)
Xét \(\int ^{\frac{\pi}{2}}_{0}\sin ^5xdx=-\int ^{\frac{\pi}{2}}_{0}\sin ^4xd(\cos x)=-\int ^{\frac{\pi}{2}}_{0}(1-\cos ^2x)^2d(\cos x)=\int ^{1}_{0}(1-t^2)^2dt\)
Do đó \(\int ^{\frac{\pi}{2}}_{0}(\cos ^5x-\sin ^5x)dx=0\)
e)
Có \(\int \cos ^3x\cos 3xdx=\int \cos 3x\left ( \frac{3\cos x+\cos 3x}{4} \right )dx=\frac{1}{4}\int \cos ^23xdx+\frac{3}{4}\int \cos x\cos 3xdx\)
\(=\frac{1}{8}\int (1+\cos 6x)dx+\frac{3}{8}\int (\cos 4x+\cos 2x)dx\)
\(=\frac{1}{8}\int (1+\cos 6x)dx+\frac{3}{8}\int (\cos 4x+\cos 2x)dx=\frac{x}{8}+\frac{\sin 6x}{48}+\frac{3\sin 4x}{32}+\frac{3\sin 2x}{16}\)
Suy ra \(\int ^{\pi}_{0}\cos ^3x\cos 3xdx=\frac{\pi}{8}\)
a) =
=
b) = =
=
c)=
d)=
=
e)=
=
g)Ta có f(x) = sin3xcos5x là hàm số lẻ.
Vì f(-x) = sin(-3x)cos(-5x) = -sin3xcos5x = f(-x) nên: