\(a,\left(x^2+2xy\right)^3\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

a) \(\left(x^2+2xy\right)^3\)

\(=\left(x^2\right)^3+3\left(x^2\right)^22xy+3x^2\left(2xy\right)^2+\left(2xy\right)^3\)

\(=x^6+6x^5y+12x^4y^2+8x^3y^3\)

b) \(\left(3x^2-2y\right)^3\)

\(=\left(3x^2\right)^3-3\left(3x^2\right)^22y+3.3x^2\left(2y\right)^2-\left(2y\right)^3\)

\(=27x^6-54x^4y+36x^2y^2-8y^3\)

c) \(\left(2x^3-y^2\right)^3\)

\(=\left(2x^3\right)^3-3\left(2x^3\right)^2y^2+3.2x^3\left(y^2\right)^2-\left(y^2\right)^3\)

\(=8x^9-12x^6y^2+6x^3y^4-y^6.\)

19 tháng 6 2018

a,\(\left(x^2+2xy\right)^3=\left(x^2\right)^3+3.\left(x^2\right)^2.2xy+3.\left(2xy\right)^2.x^2+\left(2xy\right)^3\)

\(=x^6+6x^5y+12x^4y^2+8x^3y^3\)

b,\(\left(3x^2-2y\right)^3=\left(3x^2\right)^3-3.\left(3x^2\right)^2.2y+3.\left(2y\right)^2.3x^2-\left(2y\right)^3\)

\(=27x^6-54x^4y+36y^2x^2-8y^3\)

c,\(\left(2x^3-y^2\right)^3=8x^9-12x^6y^2+6x^3y^4-y^6\)

11 tháng 6 2018

\(a,\left(2x+y+3\right)^2=4x^2+y^2+9+4xy+12x+6y\)

\(b,\left(x-2y+1\right)^2=x^2+4y^2+1-4xy+2x-4y\)

\(c,\left(x^2-2xy^2-3\right)^2=x^4+2x^2y^4+9-4x^3y^2-6x^2+12xy^2\)

11 tháng 6 2018

Giải:

a) \(\left(2x+y+3\right)^2\)

\(=\left(2x+y\right)^2+2.3\left(2x+y\right)+3^2\)

\(=\left(2x\right)^2+2.2x.y+y^2+2.3\left(2x+y\right)+3^2\)

\(=4x^2+4xy+y^2+12x+6y+9\)

Vậy ...

b) \(\left(x-2y+1\right)^2\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1^2\)

\(=x^2-2.x.2y+\left(2y\right)^2+2x-4y+1^2\)

\(=x^2-4xy+4y^2+2x-4y+1\)

Vậy ...

c) \(\left(x^2-2xy^2-3\right)^2\)

\(=\left(x^2-2xy^2\right)^2+2.3.\left(x^2-2xy^2\right)-3^2\)

\(=\left(x^2\right)^2-2.x^2.2xy^2+\left(2xy^2\right)^2+2.3.\left(x^2-2xy^2\right)-3^2\)

\(=x^4-4x^3y^2+4x^2y^4+6x^2-12xy^2-9\)

Vậy ...

19 tháng 6 2018

a,\(\left(2x^3y-0,5x^2\right)^3=\left(2x^3y\right)^3-3.\left(2x^3y\right)^2.\left(0,5x^2\right)+3.\left(0,5x^2\right)^2.\left(2x^3y\right)-\left(0,5x^2\right)^3\)

\(=8x^9y^3-6x^8y^2+\frac{3}{2}x^7y-\frac{1}{8}x^6\)

b,\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]\)

\(=x^3-\left(3y\right)^3=x^3-27y^3\)

\(\left(x^2-3\right)\left(x^4+3x^2+9\right)=\left(x^2-3\right)\left[\left(x^2\right)^2+3.x^2+3^2\right]\)

\(=\left(x^2\right)^3-3^3=x^6-27\)

11 tháng 6 2018

Giải:

a) \(\left(3x^2-2y^3\right)^2\)

\(=\left(3x^2\right)^2-2.3x.2y+\left(2y^3\right)^2\)

\(=9x^4-12xy+4y^6\)

Vậy ...

b) \(\left(-2x^2-3\right)^2\)

\(=\left(-2x^2\right)^2-2.2x^2.3+3^2\)

\(=4x^4-12x^2+9\)

Vậy ...

a) Ta có: \(\left(x-3\right)^3\)

\(=x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3\)

\(=x^3-9x^2+27x^2-27\)

b) Ta có: \(\left(2x-3\right)^3\)

\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2-3^3\)

\(=8x^3-36x^2+54x-27\)

c) Ta có: \(\left(x-\frac{1}{2}\right)^3\)

\(=x^3-3\cdot x^2\cdot\frac{1}{2}+3\cdot x\cdot\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3\)

\(=x^3-\frac{3}{2}x^2+\frac{3}{4}x-\frac{1}{8}\)

d) Ta có: \(\left(x^2-2\right)^3\)

\(=\left(x^2\right)^3-3\cdot\left(x^2\right)^2\cdot2+3\cdot x^2\cdot2^2-2^3\)

\(=x^6-6x^4+12x^2-8\)

e) Ta có: \(\left(2x-3y\right)^3\)

\(=\left(2x\right)^3-2\cdot\left(2x\right)^2\cdot3y+2\cdot2x\cdot\left(3y\right)^2-\left(3y\right)^3\)

\(=8x^3-24x^2y+36xy^2-27y^3\)

f) Ta có: \(\left(\frac{1}{2}x-y^2\right)^3\)

\(=\left(\frac{1}{2}x\right)^3-3\cdot\left(\frac{1}{2}x\right)^2\cdot y^2+3\cdot\frac{1}{2}x\cdot\left(y^2\right)^2-\left(y^2\right)^3\)

\(=\frac{1}{8}x^3-\frac{3}{4}x^2y^2+\frac{3}{2}xy^4-y^6\)

20 tháng 6 2018

a) \(\left(2x^3y-0,5x^2\right)^3\)

\(=\left(2x^3y\right)^3-3\left(2x^3y\right)^20,5x^2+3.2x^3y\left(0,5x^2\right)^2-\left(0,5x^2\right)^3\)

\(=8x^9y^3-6x^8y^2+1,5x^7y-0,125x^6\)

b) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(=x^3-\left(3y\right)^3\)

\(=x^3-27y^3\)

c) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)\)

\(=x^3-3^3\)

\(=x^3-27.\)

11 tháng 6 2018

a) \(\left(3x^2-2y^3\right)^2\)

\(=\left(3x^2\right)^2-2\cdot3x^2\cdot2y^3+\left(2y^3\right)^2\)

\(=9x^4-12x^2y^3+4y^6\)

b) \(\left(-2x^2-3\right)^2\)

\(=\left(-2x^2\right)^2-2\cdot\left(-2x^2\right)\cdot3+3^2\)

\(=4x^4+12x^2+9\)

a) Ta có: \(\left(x+1\right)^3\)

\(=x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3\)

\(=x^3+3x^2+3x+1\)

b) Ta có: \(\left(2x+3\right)^3\)

\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3\)

\(=8x^3+3\cdot4x^2\cdot3+27\cdot2x+27\)

\(=8x^3+36x^2+54x+27\)

c) Ta có: \(\left(x+\frac{1}{2}\right)^3\)

\(=x^3+2\cdot x^2\cdot\frac{1}{2}+2\cdot x\cdot\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3\)

\(=x^3+x^2+\frac{1}{2}x+\frac{1}{8}\)

d) Ta có: \(\left(x^2+2\right)^3\)

\(=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot2+3\cdot x^2\cdot2^2+2^3\)

\(=x^6+6x^4+12x^2+8\)

e) Ta có: \(\left(2x+3y\right)^3\)

\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3y+3\cdot2x\cdot\left(3y\right)^2+\left(3y\right)^3\)

\(=8x^3+36x^2y+54xy^2+27y^3\)

f) Ta có: \(\left(\frac{1}{2}x+y^2\right)^3\)

\(=\left(\frac{1}{2}x\right)^3+3\cdot\left(\frac{1}{2}x\right)^2\cdot y^2+3\cdot\frac{1}{2}x\cdot\left(y^2\right)^2+\left(y^2\right)^3\)

\(=\frac{1}{8}x^3+\frac{3}{4}x^2y^2+\frac{3}{2}xy^4+y^6\)