Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x^3+1\right)-\left(x^3-1\right)\)
\(=x^3+1-x^3+1\)
\(=2\)
Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.
b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)
\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)
\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)
\(=27\)
Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.
c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)
\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)
\(=-65\)
Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.
d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)
\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)
\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)
\(=0\)
Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.
f: \(x^2y^2+2xy+1=\left(xy+1\right)^2\)
g: \(\left(3x-2y\right)^2+2\left(3x-2y\right)+1=\left(3x-2y+1\right)^2\)
h: \(\left(x-3y\right)^2-8\left(x-3y\right)+16=\left(x-3y-4\right)^2\)
i: \(\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)^2=4x^2\)
a: \(=4x^2-25-4x^2+12x-9-12x=-34\)
b: \(=8y^3-12y^2+6y-1-2y\left(4y^2-12y+9\right)-12y^2+12y\)
\(=8y^3-24y^2+18y-1-8y^3+24y^2-18y=-1\)
c: \(=x^3+27-x^3-20=7\)
d: \(=3y\left(9y^2+12y+4\right)-27y^3+1-36y^2-12y-1\)
\(=27y^3+36y^2+12y-27y^3-36y^2-12y\)
=0
a, \(\left(2x-3y\right)^3=8x^3-36x^2y+54xy^2-27y^3\)
b, \(\left(2x+\dfrac{9}{2}\right)^3=8x^3-54x^2+121,5x-91,125\)
c, \(\left(x+2y\right)^3+\left(x-2y\right)^3=x^3+6x^2y+12xy^2+8y^3+x^3-6x^2y+12xy^2-8y^3\)
\(=2x^3+24xy^3\)
d, \(\left(2x+1\right)^3-\left(x-1\right)^3-7\left(x+1\right)^3\)
\(=8x^3+12x^2+6x+1-\left(x^3-3x^2+3x-1\right)-7\left(x^3+3x^2+3x+1\right)\)
\(=8x^3+12x^2+6x+1-x^3+3x^2-3x+1-7x^3-21x^2-21x-7\)
\(=-6x^2-18x-5\)
Chúc bạn học tốt!!!
a,\(\left(2x-1\right)\left(4x^2+2x+1\right)=\left(2x-1\right)\left[\left(2x\right)^2+2x.1+1^2\right]\)
\(=\left(2x\right)^3-1=8x^3-1\)
b,\(\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2\)
\(=x^2+2.x.2y+\left(2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)
`a)(2x-1)(4x^2+2x+1)`
`=(2x-1)[(2x)^2+2x.1+1^2]`
`=(2x)^3-1^3`
`=8x^3-1`
Áp dụng HĐT:`A^3-B^3=(A-B)(A^2+AB+B^2)`
`b)(x+2y+z)(x+2y-z)`
`=[(x+2y)+z][(x+2y)-z]`
`=(x+2y)^2-z^2`
`=x^2+2.x.2y+(2y)^2-z^2`
`=x^2+4xy+4y^2-z^2`
Áp dụng HĐT:`A^2-B^2=(A+B)(A-B)`
`(A+B)^2=A^2+2AB+B^2`
Bài 1:
a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)
\(=10-10x=10(1-x)\)
b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)
\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)
\(=-7x^2+7x=7x(1-x)\)
c)
\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)
\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)
\(=\left\{3-x-5[9x-2]\right\}(-2x)\)
\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)
Bài 2:
a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)
\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)
\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)
b)
\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)
\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)
\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)
\(2x^2+3(x^2-1)=5x(x+1)\)
a) \(\left(x+\dfrac{1}{2}\right)^2-2x^2\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-2x^2\)
\(=x^2+x+\dfrac{1}{4}-2x^2\)
\(=-x^2+x+\dfrac{1}{4}\)
b) \(\left(x-2y\right)^2-4y^2\)
\(=x^2-2\cdot x\cdot2y+\left(2y\right)^2-4y^2\)
\(=x^2-4xy+4y^2-4y^2\)
\(=x^2-4xy\)
c) \(\left(x+\dfrac{1}{2}y\right)^3\)
\(=x^3+3\cdot x^2\cdot\dfrac{1}{2}y+3\cdot x+\left(\dfrac{1}{2}y\right)^2+\left(\dfrac{1}{2}y\right)^3\)
\(=x^3+\dfrac{3}{2}x^2y+\dfrac{3}{4}xy^2+\dfrac{1}{8}y^3\)
d) \(\left(2x^2-3y\right)^3\)
\(=\left(2x^2\right)^3-3\cdot\left(2x^2\right)^2\cdot3y+3\cdot2x^2\cdot\left(3y\right)^2-\left(3y\right)^3\)
\(=8x^6-36x^4y+54x^2y^2-27y^3\)
e) \(\left(x^2+y\right)^2-\left(x+y\right)^2\)
\(=\left[\left(x^2\right)^2+2\cdot x^2\cdot y+y^2\right]-\left(x^2+2\cdot x\cdot y+y^2\right)\)
\(=\left(x^4+2x^2y+y^2\right)-\left(x^2+2xy+y^2\right)\)
\(=x^4+2x^2y+y^2-x^2-2xy-y^2\)
\(=x^4+2x^2y-x^2-2xy\)
a. (2x+3y)2= (2x)2+2.2x.3y+(3y)2
=4x2+12xy+9y2
b. 2(\(\dfrac{1}{2}\)x2+y)(x2-2y)
=(x2+2y)(x2-2y)
=x4-4y2
c, (x+y+z)2= [(x+y)+z]2
=(x+y)2+2(x+y)z+z2
=x2+2xy+y2+2xz+2yz+z2
=x2+y2+z2+2xy+2yz+2xz