K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2021

A B C O D E F H I

a) AD là tiếp tuyến của (O) => AD vuông góc AO; \(\Delta\)ABC cân tại A có tâm ngoại tiếp O => AO vuông góc BC

Vậy AD || BC (đpcm).

b) Dễ thấy ^AEF = ^BEA; ^EAF = ^EBA => \(\Delta\)EAF ~ \(\Delta\)EBA => EA2 = EF.EB (đpcm).

c) Ta có ^FDE = ^FCB (vì DA || BC) = ^DBE (vì BD là tiếp tuyến của (O)) => \(\Delta\)DEF ~ \(\Delta\)BED

=> ED2 = EF.EB = EA2 => E là trung điểm của AD, do đó IE là đường trung bình \(\Delta\)OAD

=> IE vuông góc AD => A,E,I,H cùng thuộc đường tròn đường kính AI (1)

Lại có E là trung điểm cạnh AD của tam giác AHD vuông tại H

=> EH2 = EA2 = EF.EB => \(\Delta\)EFH ~ \(\Delta\)EHB => ^EHF = ^EBH = ^EAF => A,H,E,F cùng thuộc 1 đường tròn (2)

Từ (1);(2) => F nằm trên đường tròn đường kính AI => AI vuông góc IF (đpcm).

15 tháng 12 2017

\(A=\sqrt{27}-2\sqrt{12}-\sqrt{75}\)

\(A=\sqrt{9.3}-2\sqrt{3.4}-\sqrt{25.3}\)

\(A=3\sqrt{3}-4\sqrt{3}-5\sqrt{3}\)

\(A=-6\sqrt{3}\)

\(B=\frac{1}{3+\sqrt{7}}+\frac{1}{3-\sqrt{7}}\)

\(B=\frac{3-\sqrt{7}+3\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)

\(B=\frac{6}{9-7}=3\)

15 tháng 12 2017

\(A=\sqrt{27}-2\sqrt{12}-\sqrt{75}\)

\(=\sqrt{3^2.3}-2.\sqrt{2^2.3}-\sqrt{5^2.3}\)

\(=3\sqrt{3}-4\sqrt{3}-5\sqrt{3}\)

\(=-6\sqrt{3}\)

vậy \(A=-6\sqrt{3}\)

\(B=\frac{1}{3+\sqrt{7}}+\frac{1}{3-\sqrt{7}}\)

\(B=\frac{3-\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}+\frac{3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)

\(B=\frac{3-\sqrt{7}+3+\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)

\(B=\frac{6}{9-7}\)

\(B=\frac{6}{2}\)

\(B=3\)

vậy \(B=3\)

12 tháng 7 2018

hình đây

a: Xét tứ giác AEHF có

góc AEH+góc AFH=180 độ

=>AEHF là tứ giác nội tiếp

Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC là tứ giác nội tiếp

b: Xét (O) có

ΔABK nội tiếp

AK là đường kính

=>ΔABK vuông tại B

=>BK//CH

Xét (O) có

ΔACK nội tiếp

AK là đường kính

=>ΔACK vuông tại C

=>CK//BH

Xét tứ giác BHCK có

BH//CK

BK//CH

=>BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

=>I là trung điểm của BC

14 tháng 1 2019

A B C L' K O J E D I F L

Gọi I là tâm nội tiếp \(\Delta\)ABC, khi đó 3 điểm C,I,K  thẳng hàng. Gọi đường tròn ngoại tiếp \(\Delta\)AIE cắt tia CI tại điểm thứ hai F.

Xét \(\Delta\)CKA và \(\Delta\)CIB có: ^ACK = ^BCI (=^ACB/2); ^CAK = ^CBI (=^ABC/2) => \(\Delta\)CKA ~ \(\Delta\)CIB (g.g)

Suy ra: \(\frac{CK}{CI}=\frac{CA}{CB}\). Mà \(\frac{CA}{CB}=\frac{CD}{CA}\)(\(\Delta\)CAD ~ \(\Delta\)CBA) nên \(\frac{CK}{CI}=\frac{CD}{CA}\Rightarrow\frac{CK}{CD}=\frac{CI}{CA}\)

Lại có: CEA và CIF là 2 cát tuyến của (AIE) nên \(\frac{CI}{CA}=\frac{CE}{CF}\). Từ đó: \(\frac{CK}{CD}=\frac{CE}{CF}\)

Suy ra: \(\Delta\)CEK ~ \(\Delta\)CFD (c.g.c) => ^CEK = ^CFD. Nếu ta gọi 2 tia FD và EK cắt nhau ở L' thì ^CEL' = ^CFL'

=> Tứ giác CL'FE nội tiếp => ^ECF = ^EL'F => ^KCD = ^KL'D => Tứ giác CKDL' nội tiếp 

Áp dụng phương tích đường tròn có: FK.FC=FD.FL'   (1)

Cũng từ \(\Delta\)CKA ~ \(\Delta\)CIB (cmt) => ^BIF = ^AKI hay ^AKF = ^EIC => ^AKF = ^CAF

=> \(\Delta\)AFK ~ \(\Delta\)CFA (g.g)  => FA2 = FK.FC        (2)

Từ (1) và (2) => FA2 = FD.FL' => \(\Delta\)FDA ~ \(\Delta\)FAL' (c.g.c)

=> ^FL'A = ^FAD = ^DAC - ^FAC = ^ABC - ^FKA = ^ABC - (^KAC + ^ACK) = ^ABC/2 - ^ACB/2

Do đó: ^AL'E = ^FL'A + ^FL'E = ^ABC/2 - ^ACB/2 + ^ACB/2 = ^ABC/2 = ^ABE => Tứ giác ABL'E nội tiếp

Hay tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L' => L' trùng L

Từ đó dễ có: ^BLC = ^ABC/2 + ^ACB + ^ABC/2 + ^BAC/2 = ^ABC + ^ACB + ^BAC/2 = 1800 - ^BAC/2

Vậy thì tâm của đường tròn (BLC) nằm tại điểm chính giữa cung BC chứa A của (O) (đpcm).

4 tháng 3 2021

mọi người giúp em với ạ em cần gấp

 

4 tháng 3 2021

.