Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{27}-2\sqrt{12}-\sqrt{75}\)
\(A=\sqrt{9.3}-2\sqrt{3.4}-\sqrt{25.3}\)
\(A=3\sqrt{3}-4\sqrt{3}-5\sqrt{3}\)
\(A=-6\sqrt{3}\)
\(B=\frac{1}{3+\sqrt{7}}+\frac{1}{3-\sqrt{7}}\)
\(B=\frac{3-\sqrt{7}+3\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)
\(B=\frac{6}{9-7}=3\)
\(A=\sqrt{27}-2\sqrt{12}-\sqrt{75}\)
\(=\sqrt{3^2.3}-2.\sqrt{2^2.3}-\sqrt{5^2.3}\)
\(=3\sqrt{3}-4\sqrt{3}-5\sqrt{3}\)
\(=-6\sqrt{3}\)
vậy \(A=-6\sqrt{3}\)
\(B=\frac{1}{3+\sqrt{7}}+\frac{1}{3-\sqrt{7}}\)
\(B=\frac{3-\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}+\frac{3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)
\(B=\frac{3-\sqrt{7}+3+\sqrt{7}}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)
\(B=\frac{6}{9-7}\)
\(B=\frac{6}{2}\)
\(B=3\)
vậy \(B=3\)
a: Xét tứ giác AEHF có
góc AEH+góc AFH=180 độ
=>AEHF là tứ giác nội tiếp
Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
b: Xét (O) có
ΔABK nội tiếp
AK là đường kính
=>ΔABK vuông tại B
=>BK//CH
Xét (O) có
ΔACK nội tiếp
AK là đường kính
=>ΔACK vuông tại C
=>CK//BH
Xét tứ giác BHCK có
BH//CK
BK//CH
=>BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
=>I là trung điểm của BC
A B C L' K O J E D I F L
Gọi I là tâm nội tiếp \(\Delta\)ABC, khi đó 3 điểm C,I,K thẳng hàng. Gọi đường tròn ngoại tiếp \(\Delta\)AIE cắt tia CI tại điểm thứ hai F.
Xét \(\Delta\)CKA và \(\Delta\)CIB có: ^ACK = ^BCI (=^ACB/2); ^CAK = ^CBI (=^ABC/2) => \(\Delta\)CKA ~ \(\Delta\)CIB (g.g)
Suy ra: \(\frac{CK}{CI}=\frac{CA}{CB}\). Mà \(\frac{CA}{CB}=\frac{CD}{CA}\)(\(\Delta\)CAD ~ \(\Delta\)CBA) nên \(\frac{CK}{CI}=\frac{CD}{CA}\Rightarrow\frac{CK}{CD}=\frac{CI}{CA}\)
Lại có: CEA và CIF là 2 cát tuyến của (AIE) nên \(\frac{CI}{CA}=\frac{CE}{CF}\). Từ đó: \(\frac{CK}{CD}=\frac{CE}{CF}\)
Suy ra: \(\Delta\)CEK ~ \(\Delta\)CFD (c.g.c) => ^CEK = ^CFD. Nếu ta gọi 2 tia FD và EK cắt nhau ở L' thì ^CEL' = ^CFL'
=> Tứ giác CL'FE nội tiếp => ^ECF = ^EL'F => ^KCD = ^KL'D => Tứ giác CKDL' nội tiếp
Áp dụng phương tích đường tròn có: FK.FC=FD.FL' (1)
Cũng từ \(\Delta\)CKA ~ \(\Delta\)CIB (cmt) => ^BIF = ^AKI hay ^AKF = ^EIC => ^AKF = ^CAF
=> \(\Delta\)AFK ~ \(\Delta\)CFA (g.g) => FA2 = FK.FC (2)
Từ (1) và (2) => FA2 = FD.FL' => \(\Delta\)FDA ~ \(\Delta\)FAL' (c.g.c)
=> ^FL'A = ^FAD = ^DAC - ^FAC = ^ABC - ^FKA = ^ABC - (^KAC + ^ACK) = ^ABC/2 - ^ACB/2
Do đó: ^AL'E = ^FL'A + ^FL'E = ^ABC/2 - ^ACB/2 + ^ACB/2 = ^ABC/2 = ^ABE => Tứ giác ABL'E nội tiếp
Hay tia EK cắt đường tròn ngoại tiếp tam giác ABE tại L' => L' trùng L
Từ đó dễ có: ^BLC = ^ABC/2 + ^ACB + ^ABC/2 + ^BAC/2 = ^ABC + ^ACB + ^BAC/2 = 1800 - ^BAC/2
Vậy thì tâm của đường tròn (BLC) nằm tại điểm chính giữa cung BC chứa A của (O) (đpcm).
A B C O D E F H I
a) AD là tiếp tuyến của (O) => AD vuông góc AO; \(\Delta\)ABC cân tại A có tâm ngoại tiếp O => AO vuông góc BC
Vậy AD || BC (đpcm).
b) Dễ thấy ^AEF = ^BEA; ^EAF = ^EBA => \(\Delta\)EAF ~ \(\Delta\)EBA => EA2 = EF.EB (đpcm).
c) Ta có ^FDE = ^FCB (vì DA || BC) = ^DBE (vì BD là tiếp tuyến của (O)) => \(\Delta\)DEF ~ \(\Delta\)BED
=> ED2 = EF.EB = EA2 => E là trung điểm của AD, do đó IE là đường trung bình \(\Delta\)OAD
=> IE vuông góc AD => A,E,I,H cùng thuộc đường tròn đường kính AI (1)
Lại có E là trung điểm cạnh AD của tam giác AHD vuông tại H
=> EH2 = EA2 = EF.EB => \(\Delta\)EFH ~ \(\Delta\)EHB => ^EHF = ^EBH = ^EAF => A,H,E,F cùng thuộc 1 đường tròn (2)
Từ (1);(2) => F nằm trên đường tròn đường kính AI => AI vuông góc IF (đpcm).