Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=4x\)
\(\left|x+3,4\right|\ge0;\left|x+2,4\right|\ge0;\left|x+7,2\right|\ge0\)
\(< =>\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|>0\)
\(< =>4x>0\)
\(x>0\)
\(\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)
\(x+3,4+x+2,4+x+7,2=4x\)
\(x=13\left(TM\right)\)
\(b,3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(3^n.27+3^n.3+2^n.8+2^n.4\)
\(3^n.30+2^n.12\)
\(\hept{\begin{cases}3^n.30⋮6\\2^n.12⋮6\end{cases}}\)
\(< =>3^n.30+2^n.12⋮6< =>VP⋮6\)
86.NHỮNG PHÉP TÍNH THÚ VỊ
24+36=1
11+13=1
158+207=1
46+54=1
thì khi đó người làm câu hỏi bị sai/ mình nghĩ thế
Bài 1: Phân tích các đa thức sau thành nhân tử
\(36a^4-y^2\)
\(=\left(6a\right)^2-y^2\)
\(=\left(6a^2-y\right).\left(6a^2+y\right)\)
\(6x^2+x-2\)
\(=6x^2+4x-3x-2\)
\(=2x.\left(3x+2\right)-\left(3x+2\right)\)
\(=\left(2x-1\right).\left(3x+2\right)\)
Bài 2: Tìm x, biết
\(x.\left(x-4\right)+1=3x-5\)
\(\Rightarrow x^2-4x+1=3x-5\)
\(\Rightarrow x^2-4x+1-3x+5=0\)
\(\Rightarrow x^2-7x+6=0\)
\(\Rightarrow x^2-6x-x+6=0\)
\(\Rightarrow x.\left(x-6\right)-\left(x-6\right)=0\)
\(\Rightarrow\left(x-6\right).\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-6=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=6\\x=1\end{cases}}\)
\(2x^3-3x^2-2x+3=0\)
\(\Rightarrow\left(2x^3-3x^2\right)-\left(2x-3\right)=0\)
\(\Rightarrow x^2.\left(2x-3\right)-\left(2x-3\right)=0\)
\(\Rightarrow\left(x^2-1\right).\left(2x-3\right)=0\)
\(\Rightarrow\left(x-1\right).\left(x+1\right).\left(2x-3\right)=0\)
Trường hợp 1: \(x-1=0\Rightarrow x=1\)
Trường hợp 2: \(x+1=0\Rightarrow x=-1\)
Trường hợp 3: \(2x-3=0\Rightarrow x=\frac{3}{2}\)
Bài 3:
a)
\(A=x^3-9x^2+27x-27\)
\(=x^3-3x^2.3x.3^x-3^3\)
\(=\left(x-3\right)^3\)
Thay vào ta được
\(A=\left(1-3\right)^3\)
\(=\left(-2\right)^3\)
\(=-8\)
Vậy \(A=-8\) khi \(x=1\)
b)
x-2 2x^2 + 5x + 9 2x^3 + x^2 - x + 1 - 2x^3 - 4x^2 5x^2 - x + a - 5x^2 - 10x 9x + a - 9x - 18 a - 18 @yennhiyl #OLM
Vậy đa thức thương là \(2x^2+5x+9\)
Vậy đa thức dư là \(a-18\)
\(B=n^3\left(n^2-7\right)^2-36n=n\left[\left(n^3-7n\right)^2-36\right]=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n-1\right)\left(n-2\right)\)là tích của \(7\)số nguyên liên tiếp nên trong đó có ít nhất \(1\)số chia hết cho \(3\), \(1\)số chia hết cho \(5\), \(1\)số chia hết cho \(7\).
mà \(3,5,7\)đôi một nguyên tố cùng nhau nên \(B\)chia hết cho \(3.5.7=105\).