Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=/x-1/+/x-3/+/x-5/+/x-7/=/x-1/+/3-x/+/x-5/+/7-x/>=/x-1+3-x/+/x-5+7-x/=4
dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-1>=0,3-x>=0\\x-5>=0,7-x>=0\end{cases}\Rightarrow\hept{\begin{cases}x>=1,3>=x\\x>=5,7>=x\end{cases}\Rightarrow}\hept{\begin{cases}1< =x< =3\\5< =x< =7\end{cases}}}\)
vậy 1<=x<=3 và 5<=x<=7
\(B=\left|x+1\right|+\left|x-4\right|+\left|2x-5\right|\ge\left|2x-3\right|+\left|2x-5\right|=\left|2x-3\right|+\left|5-2x\right|\)
\(\ge\left|2x-3+5-2x\right|=\left|2\right|=2\)
Dấu ''='' xảy ra khi \(\left(x+1\right)\left(4-x\right)\ge0;\left(2x-3\right)\left(5-2x\right)\ge0\)
\(-1\le x\le4;\frac{3}{2}\le x\le\frac{5}{2}\Rightarrow-1\le x\le4\)
Vậy GTNN của B bằng 2 tại -1 =< x =< 4
ta có : \(\left(x-2\right)\left(5-x\right)\le\left(\frac{x-2+5-x}{2}\right)^2=\frac{9}{4}\)
mà vế trái \(\left|y-1\right|+1\ge1\Rightarrow\orbr{\begin{cases}\left(x-2\right)\left(5-x\right)=2\\\left(x-2\right)\left(5-x\right)=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2-7x+12=0\\x^2-7x+11=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
khi đó \(\left|y-1\right|+1=2\Leftrightarrow\left|y-1\right|=1\Leftrightarrow\orbr{\begin{cases}y-1=1\\y-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=2\\y=0\end{cases}}\)
Vậy ta có x bằng 3 hoặc 4 và y bằng 0 hoặc 2
các câu khác hoàn toàn tương tự nhé
cho mình hỏi là ở chỗ ta có thì \(\frac{9}{4}\)là ở đâu ak
Mình hướng dẫn cách làm thôi nhé !
Kéo dài Cy theo đầu C cắt AB tại D. Có góc BCY + góc BCD = 1800 ( kề bù )
Mà góc BCy = 1300 => góc BCD = 1800 - 1300 = 500
Xét tam giác BCD có góc B + góc BCD + góc BDC = 1800 ( tổng 3 góc trong tam giác )
=> góc BDC = 1800 - góc B - góc BCD = 580 ( Bạn tự tính ra nhé )
Từ đó ta thấy góc A = góc BDC = 580. Mà 2 góc này ở vị trí đồng vị nên Ax // Cy ( Do D thuộc Cy )
Trên nửa mặt phẳng bờ AB chứa C, kẻ \(BD//Ax\), Ta có:
\(\widehat{xAB}=\widehat{ABD}=100^o\)(2 góc so le trong)
Do tia \(BC\)nằm giữa 2 tia \(BA\)và \(BD\)
\(\Rightarrow\widehat{ABC}+\widehat{CBD}=\widehat{ABD}\)
Thay số: \(40^o+\widehat{CBD}=100^o\)
\(\Rightarrow\widehat{CBD}=100^o-40^o=60^o\)
+) Do\(\hept{\begin{cases}BD//Ax\\Ax//Cy\left(gt\right)\end{cases}}\)
\(\Rightarrow BD//Cy\)(Tính chất bắc cầu)
\(\Rightarrow\widehat{yCB}+\widehat{CBD}=180^o\)
Thay số: \(\Rightarrow\widehat{yCB}+60^o=180^o\)
\(\Rightarrow\widehat{yCB}=180^o-60^o=120^o\)
Vậy, \(\widehat{BCy}=120^o\)
Tính GTNN mn nha