Câu 1.

Cho biểu thức 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

undefined

Câu 1.

Cho biểu thức \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)\(N=\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\) với \(x\ge0,x\ne4,x\ne9.\)

1) Tính giá trị của biểu thức N khi x = 16,

2) Rút gọn biểu thức M.

3) Tìm tất cả các số tự nhiên x để M < N.

Câu 2.

Giải bài toán bằng cách lập phương trình hoặc hệ phương trình:

Hai người đi xe đạp xuất phát cùng một lúc đi từ A đến B. Vận tốc của họ hơn kém nhau 4 km/h nên đến B sớm muộn hơn nhau 45 phút. Tính vận tốc của mỗi người, biết quãng đường AB dài 36 km.

Câu 3.

1) Giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{x+1}{x}+\dfrac{2y+1}{y}=5\\\dfrac{3x+2}{x}+\dfrac{3y+1}{y}=9\end{matrix}\right.\)

2) Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: y = x + m và parabol (P): y = x2.

a) Tìm các tọa độ giao điểm của d và (P) khi m = 6.

b) Tìm m sao cho d cắt (P) tại hai điểm phân biệt có hoành độ dương.

Câu 4.

Cho tam giác ABC vuông tại A và AB < AC. Gọi H là hình chiếu vuông góc của A trên BC và M là điểm đối xứng của H qua AB.

1) Chứng minh tứ giác AMBH nội tiếp.

2) P là giao điểm thứ hai của đường thẳng CM với đường tròn ngoại tiếp tứ giác AMBH. Chứng minh CP.CM = CA2.

3) Gọi E, N lần lượt là giao điểm thứ hai của AB, HP với đường tròn ngoại tiếp tam giác APC. Chứng minh rằng EN song song với BC.

Câu 5.

Giải phương trình: \(\sqrt{x-3}+x^2-6x+7=0\)

7

Câu 2: 

2) Ta có: \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-\sqrt{x}}{\sqrt{x}-3}\)

16 tháng 4 2021

Câu 2 : 

Gọi : vận tốc của người đi chậm là : x (km/h) ( x > 0 ) 

Vận tốc của người đi nhanh : x + 4 (km/h) 

Vi : người đi chậm đến muộn hơn : 45 phút \(=\dfrac{3}{4}\left(h\right)\)

Khi đó : 

\(\dfrac{36}{x}-\dfrac{36}{x+4}=\dfrac{3}{4}\)

\(\Leftrightarrow\left[36\cdot\left(x+4\right)-36x\right]\cdot4=3x\cdot\left(x+4\right)\)

\(\Leftrightarrow3x^2+12x-144=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=12\left(n\right)\\x=16\left(l\right)\end{matrix}\right.\)

 

 

[Ôn thi vào 10]Bài 1: Cho biểu thức \(P=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{2\sqrt{x}-1}{1-\sqrt{x}}+\dfrac{2x}{x-1}\) (với \(x\ge0\) và \(x\ne1\))a. Rút gọn biểu thức \(P\).b. Tính giá trị của biểu thức \(P\) khi \(x=4+2\sqrt{3}\).Bài 2:a. Viết phương trình đường thẳng \(d\) đi qua điểm \(A\left(1;-2\right)\) và song song với đường thẳng \(y=2x-1\).b. Giải hệ phương...
Đọc tiếp

undefined

[Ôn thi vào 10]

Bài 1

Cho biểu thức \(P=\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{2\sqrt{x}-1}{1-\sqrt{x}}+\dfrac{2x}{x-1}\) (với \(x\ge0\) và \(x\ne1\))

a. Rút gọn biểu thức \(P\).

b. Tính giá trị của biểu thức \(P\) khi \(x=4+2\sqrt{3}\).

Bài 2:

a. Viết phương trình đường thẳng \(d\) đi qua điểm \(A\left(1;-2\right)\) và song song với đường thẳng \(y=2x-1\).

b. Giải hệ phương trình 

\(\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{3}{y}=12\\\dfrac{5}{x}+\dfrac{2}{y}=19\end{matrix}\right.\)

Bài 3

Quãng đường AB đài 120 km. Một ô tô khởi hành từ A đến B, cùng lúc đó một xe máy khởi hành từ B về A với vận tốc nhỏ hơn vận tốc của ô tô là 24 km/h. Ô tô đến B được 50 phút thì xe máy về tới A. Tính vận tốc của mỗi xe.

Bài 4:

Cho phương trình \(x^2-2\left(m+2\right)x+3m+1=0\)

a. Chứng minh rằng phương trình luôn có nghiệm với mọi \(m\).

b. Gọi \(x_1,x_2\) là hai nghiệm của phương trình đã cho. Chứng minh rằng biểu thức \(M=x_1\left(3-x_2\right)+x_2\left(3-x_1\right)\) không phụ thuộc vào \(m\).

Bài 5:

Cho tam giác ABC nhọn (AB<AC), nội tiếp đường tròn (O). Tia phân giác của góc BAC cắt dây BC tại D và cắt đường tròn (O) tại điểm thứ hai là E. Các tiếp tuyến với đường tròn (O) tại C và E cắt nhau tại N, tia CN và tia AE cắt nhau tại P. Gọi Q là giao điểm của hai đường thẳng AB và CE.

a. Chứng minh tứ giác AQPC nội tiếp một đường tròn.

b. Chứng minh EN//BC.

7
16 tháng 3 2021

undefined

16 tháng 3 2021

undefined

Câu 1:    Cho các biểu thức \(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) và \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{11\sqrt{x}-3}{x-9};\) với \(x\ge0;x\ne9.\)a) Tính giá trị của A khi x = 36;b) Rút gọn biểu thức M = A + B;c) Tìm x sao cho M = M4.Câu 2:a) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:   Trên quãng đường AB dài 200km có hai ô tô đi ngược chiều. Xe 1 khởi hành từ A đi đến B, xe 2 khởi hành từ...
Đọc tiếp

undefined

Câu 1:

    Cho các biểu thức \(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) và \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{11\sqrt{x}-3}{x-9};\) với \(x\ge0;x\ne9.\)

a) Tính giá trị của A khi x = 36;

b) Rút gọn biểu thức M = A + B;

c) Tìm x sao cho M = M4.

Câu 2:

a) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

   Trên quãng đường AB dài 200km có hai ô tô đi ngược chiều. Xe 1 khởi hành từ A đi đến B, xe 2 khởi hành từ B đi đến A. Hai xe khởi hành cùng một lúc và sau hai giờ thì gặp nhau. Tính vận tốc mỗi xe nếu vận tốc xe 2 lớn hơn vận tốc xe 1 là 10km/h.

b) Một hộp sữa hình trụ có thể tích là 16π (cm3).  Biết rằng đường kính đáy và độ dài trục của hình trụ bằng nhau.

Tính diện tích vật liệu cần dùng để tạo nên một hộp sữa như vậy (bỏ qua diện tích phần ghép nối).

Câu 3: 

1) Cho đường thẳng (d): y = mx - m + 1 và parabol (P): y = x2;

    a) Tìm m để đường thẳng (d) vad parabol (P) cắt nhau tại hai điểm phân biệt;

    b) Gọi \(x_1, x_2\) là hoành độ các giao điểm của (d) và (P). Tìm m sao cho \(x_1^2x_2+x_2^2x_1=2.\)

2) Giải hệ phương trình \(\left\{{}\begin{matrix}\dfrac{3}{x}+y=5\\\dfrac{2}{x}-2y=-2.\end{matrix}\right.\)

Câu 4:

    Cho nửa đường tròn (O; R) đường kính AB. Trên cùng nửa mặt phẳng bờ AB chứa nửa đường tròn, kẻ hai tiếp tuyến Ax, By với nửa đường tròn. Lấy điểm M thuộc nửa đường tròn, tiếp tuyến tại M của nửa đường tròn cắt Ax, By lần lượt tại C và D. Nối AD cắt BC tại N, MN cắt AB tại H.

a) Chứng minh OACM là tứ giác nội tiếp;

b) Chứng minh tích AC.BD không phụ thuộc vào vị trí của M;

c) Chứng minh MN // BD và MN = NH.

Câu 5:

    Cho a, b, c > 0; a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức: 

                                     \(M=\dfrac{ab}{c^2\left(a+b\right)}+\dfrac{ac}{b^2\left(a+c\right)}+\dfrac{bc}{a^2\left(b+c\right)}.\)

Chúc các em ôn thi tốt và đạt điểm cao trong kì thi sắp tới!

7
30 tháng 3 2021

Ngoc Anh Thai e nhầm tưởng 1 giờ

30 tháng 3 2021

Bài 2

a)

Gọi vận tốc xe 1 là: x (x>0) (km/h)

=> Vận tốc xe 2 là x + 10 (km/h)

Do hai xe khởi hành cùng một lúc và sau hai giờ thì gặp nhau nên ta có phương trình:

x.2+(x+10).2 = 200

⇔ 2x + 2x + 20 = 200

⇔4x = 180

⇔x=45 (tmx>0)

Vậy vận tốc xe 1 là 45km/h, xe 2 là 45+10 = 55 km/h

14 tháng 5 2021

Lời giải

a) Thay a=2+√3a=2+3 và b=2−√3b=2−3 vào P, ta được:

P=a+b−abP=2+√3+2−√3−(2+√3)(2−√3)P=2+2−(22−√32)P=4−(4−3)P=4−4+3=3P=a+b−abP=2+3+2−3−(2+3)(2−3)P=2+2−(22−32)P=4−(4−3)P=4−4+3=3

b) {3x+y=5x−2y=−3⇔{6x+2y=10x−2y=−3⇔{7x=7x−2y=−3⇔{x=1y=2{3x+y=5x−2y=−3⇔{6x+2y=10x−2y=−3⇔{7x=7x−2y=−3⇔{x=1y=2

Vậy nghiệm hệ phương trình (1; 2)

Có gì bạn tham khảo nha//

 

1 cho biểu thức a rút gọn P P=\(\)( \(2-\dfrac{2\sqrt{x}}{\sqrt{x-3}}+\dfrac{5\left(\sqrt{x+4}\right)}{x-9} \)) :( 1-\(\dfrac{5}{\sqrt{x+3}}\)) b tìm x để P<-\(\dfrac{1}{2}\) c tìm MaxQ= P(x\(\sqrt{x}-8x+15\sqrt{x}\)) 2 cho biểu thức A=\(\dfrac{\sqrt{x}+2}{\sqrt{x+}3}-\dfrac{5}{x+\sqrt{x-}6}+\dfrac{1}{2-\sqrt{x}}\) a rútA b tìm x để \(\sqrt{A}\)<A c tìm x thuộc Z để A thuộc Z 3 cho d y=( a-1) x+1 a xác định hệ số a để ( d) đi A (2;5) b xác...
Đọc tiếp

1 cho biểu thức

a rút gọn P

P=\(\)( \(2-\dfrac{2\sqrt{x}}{\sqrt{x-3}}+\dfrac{5\left(\sqrt{x+4}\right)}{x-9} \)) :( 1-\(\dfrac{5}{\sqrt{x+3}}\))

b tìm x để P<-\(\dfrac{1}{2}\)

c tìm MaxQ= P(x\(\sqrt{x}-8x+15\sqrt{x}\))

2 cho biểu thức

A=\(\dfrac{\sqrt{x}+2}{\sqrt{x+}3}-\dfrac{5}{x+\sqrt{x-}6}+\dfrac{1}{2-\sqrt{x}}\)

a rútA

b tìm x để \(\sqrt{A}\)<A

c tìm x thuộc Z để A thuộc Z

3 cho d y=( a-1) x+1

a xác định hệ số a để ( d) đi A (2;5)

b xác định a để (d) cắt trục hoành tại điểm có hoành độ là-2

c vẽ đồ thị tìm được ở câu a,b trên cùng 1 tọa độ tìm giao điểm của B tại đường thẳng này

d tính diện tích tam giác có đỉnh là góc B và 2 đỉnh còm lại giao điểm của 2 đồ thị với trục hoành

4 giải hệ phương trình

a \(\left\{{}\begin{matrix}\dfrac{2}{x-1}+\dfrac{1}{Y+1}=7\\\\\dfrac{5}{x-1}-\dfrac{2}{y+1}=4\\\end{matrix}\right.\)

b \(\dfrac{3}{\sqrt{x-1}-1}+\dfrac{1}{\sqrt{y+1}-x}=1\)

\(\dfrac{-1}{\sqrt{x+1}-1}-\dfrac{2}{\sqrt{y+1}-2}=3\)

c \(\left\{{}\begin{matrix}\dfrac{x-\dfrac{x-1}{2}+y+3}{2}\\\\3x-2y=4\\\end{matrix}\right.\)

giúp mình giải bài này với ạ mình đang cần gấp lắm ạ

3
31 tháng 1 2019

Bạn đăng mỗi lần 1 câu thôi nhé!

1 tháng 2 2019

giúp mình giải bài này với ạ mình đang cần gấp lắm ạkhocroi

Bài 2:

a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)

=>-4x-2y=3 và 8x+2y=-2

=>x=1/4; y=-2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)

=>y=6 và x-2=5/4

=>x=13/4; y=6

c: =>x+y=24 và 3x+y=78

=>-2x=-54 và x+y=24

=>x=27; y=-3

d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)

=>y+2=1 và x-1=25

=>x=26; y=-1

17 tháng 1 2018

hỏi trước tí, bạn biết giải cái hệ này chứ?

\(\left\{{}\begin{matrix}2x+y=3\\2x-3y=1\end{matrix}\right.\)

11 tháng 12 2022

1: \(\left\{{}\begin{matrix}\left|x-1\right|+\dfrac{2}{y}=2\\-\left|x-1\right|+\dfrac{4}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{y}=3\\\left|x-1\right|=2-\dfrac{2}{y}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=2-\dfrac{2}{2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{2;0\right\}\end{matrix}\right.\)

2: \(\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\2\left|x-1\right|+\dfrac{4}{y-1}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{9}{y-1}=-9\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=3-\dfrac{2}{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{3;-1\right\}\end{matrix}\right.\)

3: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-5}+\dfrac{12}{\sqrt{y}-2}=4\\\dfrac{2}{x-5}-\dfrac{1}{\sqrt{y}-2}=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{13}{\sqrt{y}-2}=13\\\dfrac{1}{x-5}=2-\dfrac{6}{\sqrt{y}-2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=9\\\dfrac{1}{x-5}=2-\dfrac{6}{3-2}=2-\dfrac{6}{1}=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x-5=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{4}\\y=9\end{matrix}\right.\)

[Ôn thi vào 10]Câu 1:a. Cho biết \(a=2+\sqrt{3}\) và \(b=2-\sqrt{3}\). Tính giá trị biểu thức: \(P=a+b-ab\)b. Giải hệ phương trình: \(\left\{{}\begin{matrix}3x+y=5\\x-2y=-3\end{matrix}\right.\)Câu 2: Cho biểu thức \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+ 1}\) (với \(x>0,x\ne1\))a. Rút gọn biểu thức \(P\).b. Tìm các giá trị của \(x\) để \(P>\dfrac{1}{2}\).Câu 3:Cho phương...
Đọc tiếp

undefined

[Ôn thi vào 10]

Câu 1:

a. Cho biết \(a=2+\sqrt{3}\) và \(b=2-\sqrt{3}\). Tính giá trị biểu thức: \(P=a+b-ab\)

b. Giải hệ phương trình: \(\left\{{}\begin{matrix}3x+y=5\\x-2y=-3\end{matrix}\right.\)

Câu 2

Cho biểu thức \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+ 1}\) (với \(x>0,x\ne1\))

a. Rút gọn biểu thức \(P\).

b. Tìm các giá trị của \(x\) để \(P>\dfrac{1}{2}\).

Câu 3:

Cho phương trình: \(x^2-5x+m=0\) (\(m\) là tham số).

a. Giải phương trình trên khi \(m=6\).

b. Tìm \(m\) để phương trình trên có hai nghiệm \(x_1,x_2\) thỏa mãn: \(\left|x_1-x_2\right|=3\).

Câu 4:

Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC (E khác B và C), AE cắt CD tại F. Chứng minh:

a. BEFI là tứ giác nội tiếp đường tròn.

b. AE.AF=AC2.

c. Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp △CEF luôn thuộc một đường thẳng cố định.

Câu 5:

Cho hai số dương \(a,b\) thỏa mãn: \(a+b\le2\sqrt{2}\).

Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{1}{a}+\dfrac{1}{b}\).

8
18 tháng 3 2021

Câu 1 : 

a) 

\(P = a + b - ab = 2 + \sqrt{3} + 2-\sqrt{3} - (2 + \sqrt{3})(2-\sqrt{3})\\ =4 - (2^2 - (\sqrt{3})^2) = 4 - (4 - 3) = 3\)

b)

\(\left\{{}\begin{matrix}3x+y=5\\x-2y=-3\end{matrix}\right.\)\(\left\{{}\begin{matrix}3x+y=5\\3x-6y=-9\end{matrix}\right.\)\(\left\{{}\begin{matrix}y-\left(-6y\right)=5-\left(-9\right)\\x=\dfrac{5-y}{3}\end{matrix}\right.\)\(\left\{{}\begin{matrix}y=2\\x=\dfrac{5-2}{3}=1\end{matrix}\right.\)

Vậy nghiệm của hệ phương trình (x ; y) = (1 ; 2)

18 tháng 3 2021

Câu 1:

a)

\(P=a+b-ab\\ =2+\sqrt{3}+2-\sqrt{3}-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\\ =4-\left(4-2\sqrt{3}+2\sqrt{3}-3\right)\\ =4-1=3\)

Vậy \(P=3\)

b)

\(\left\{{}\begin{matrix}3x+y=5\\x-2y=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6x+2y=10\\x-2y=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7x=7\\x-2y=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\1-2y=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\2y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy pht có nghiệm là \(\left(x;y\right)=\left(1;2\right)\)

[Ôn thi vào 10]Câu 1:Giải phương trình và hệ phương trình sau:a. \(\left(x+3\right)^2=16\)b. \(\left\{{}\begin{matrix}2x+y-3=0\\\dfrac{x}{4}=\dfrac{y}{3}-1\end{matrix}\right.\)Câu 2:a. Rút gọn biểu thức: \(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\) với \(x\ge0,x\ne1\)b. Tìm \(m\) để phương trình \(x^2-5x+m-3=0\) có hai nghiệm phân biệt \(x_1,x_2\) thỏa...
Đọc tiếp

undefined

[Ôn thi vào 10]

Câu 1:

Giải phương trình và hệ phương trình sau:

a. \(\left(x+3\right)^2=16\)

b. \(\left\{{}\begin{matrix}2x+y-3=0\\\dfrac{x}{4}=\dfrac{y}{3}-1\end{matrix}\right.\)

Câu 2:

a. Rút gọn biểu thức: \(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\) với \(x\ge0,x\ne1\)

b. Tìm \(m\) để phương trình \(x^2-5x+m-3=0\) có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(x_1^2-2x_1x_2+3x_2=1\)

Câu 3:

a. Tìm \(a\) và \(b\) biết đồ thị hàm số \(y=ax+b\) đi qua điểm \(A\left(-1;5\right)\) và song song với đường thẳng \(y=3x+1\)

b. Một đội xe phải chuyên chở 36 tấn hàng. Trước khi làm việc, đội xe đó được bổ sung thêm 3 xe nữa nên mỗi xe chở ít hơn 1 tấn so với dự định. Hỏi đội xe lúc đầu có bao nhiêu xe? Biết rằng số hàng chở trên tất cả các xe có khối lượng bằng nhau.

Câu 4:

Cho nửa đường tròn (O) đường kính AB. Gọi C là điểm cố định thuộc đoạn thẳng OB (C khác O và B). Dựng đường thẳng d vuông góc với AB tại điểm C, cắt nửa đường tròn (O) tại điểm M. Trên cung nhỏ MB lấy điểm N bất kỳ (N khác M và B), tia AN cắt đường thẳng d tại điểm F, tia BN cắt đường thẳng d tại điểm E. Đường thẳng AE cắt nửa đường tròn (O) tại điểm D (D khác A).

a. Chứng minh AD.AE=AC.AB

b. Chứng minh: Ba điểm B, F, D thẳng hàng và F là tâm đường tròn nội tiếp △CDN

c. Gọi I là tâm đường tròn ngoại tiếp △AEF. Chứng minh rằng điểm I luôn nằm trên một đường thẳng cố định khi điểm N di chuyển trên cung nhỏ MB

Câu 5

Cho \(a,b,c\) là ba số thực dương thỏa mãn \(abc=1\). Tìm giá trị lớn nhất của biểu thức:

\(P=\dfrac{ab}{a^5+b^5+ab}+\dfrac{bc}{b^5+c^5+bc}+\dfrac{ca}{c^5+a^5+ca}\)

7
19 tháng 3 2021

Câu 5 : 

Ta chứng minh bđt phụ: \(x^5+y^5\ge xy\left(x^3+y^3\right)\forall x\in N\Leftrightarrow x^5+y^5-x^4y-xy^4\ge0\Leftrightarrow\left(x-y\right)x^4-y^4\left(x-y\right)\ge0\Leftrightarrow\left(x-y\right)\left(x^4-y^4\right)\ge0\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\)

 \(\Rightarrow x^5+y^5\ge xy\left(x^3+y^3\right)\) (1)

\(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\Rightarrow x^3+y^3\ge xy\left(x+y\right)\left(2\right)\)

Áp dụng bđt (1) và (2): \(\Rightarrow\dfrac{ab}{a^5+b^5+ab}\le\dfrac{ab}{ab\left(a^3+b^3\right)+ab}\le\dfrac{ab}{a^2b^2\left(a+b\right)+ab}=\dfrac{1}{ab\left(a+b\right)+1}=\dfrac{abc}{ab\left(a+b+c\right)}=\dfrac{c}{a+b+c}\) Tương tự:

\(\dfrac{bc}{b^5+c^5+bc}\le\dfrac{a}{a+b+c};\dfrac{ca}{c^5+a^5+ca}\le\dfrac{b}{a+b+c}\)

\(\Rightarrow\sum\dfrac{ab}{a^5+b^5+ab}\le\sum\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

Dấu = xảy ra \(\Leftrightarrow a=b=c\)=1

Câu 1: 

a) Ta có: \(\left(x+3\right)^2=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=4\\x+3=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)

Vậy: S={1;-7}

b) Ta có: \(\left\{{}\begin{matrix}2x+y-3=0\\\dfrac{x}{4}=\dfrac{y}{3}-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=3\\\dfrac{1}{4}x-\dfrac{1}{3}y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+2y=6\\4x-\dfrac{16}{3}y=-16\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{22}{3}y=22\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\2x=3-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(0;3)