Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2
a)
Gọi vận tốc xe 1 là: x (x>0) (km/h)
=> Vận tốc xe 2 là x + 10 (km/h)
Do hai xe khởi hành cùng một lúc và sau hai giờ thì gặp nhau nên ta có phương trình:
x.2+(x+10).2 = 200
⇔ 2x + 2x + 20 = 200
⇔4x = 180
⇔x=45 (tmx>0)
Vậy vận tốc xe 1 là 45km/h, xe 2 là 45+10 = 55 km/h
Lời giải
a) Thay a=2+√3a=2+3 và b=2−√3b=2−3 vào P, ta được:
P=a+b−abP=2+√3+2−√3−(2+√3)(2−√3)P=2+2−(22−√32)P=4−(4−3)P=4−4+3=3P=a+b−abP=2+3+2−3−(2+3)(2−3)P=2+2−(22−32)P=4−(4−3)P=4−4+3=3
b) {3x+y=5x−2y=−3⇔{6x+2y=10x−2y=−3⇔{7x=7x−2y=−3⇔{x=1y=2{3x+y=5x−2y=−3⇔{6x+2y=10x−2y=−3⇔{7x=7x−2y=−3⇔{x=1y=2
Vậy nghiệm hệ phương trình (1; 2)
Có gì bạn tham khảo nha//
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)
=>-4x-2y=3 và 8x+2y=-2
=>x=1/4; y=-2
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)
=>y=6 và x-2=5/4
=>x=13/4; y=6
c: =>x+y=24 và 3x+y=78
=>-2x=-54 và x+y=24
=>x=27; y=-3
d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)
=>y+2=1 và x-1=25
=>x=26; y=-1
hỏi trước tí, bạn biết giải cái hệ này chứ?
\(\left\{{}\begin{matrix}2x+y=3\\2x-3y=1\end{matrix}\right.\)
1: \(\left\{{}\begin{matrix}\left|x-1\right|+\dfrac{2}{y}=2\\-\left|x-1\right|+\dfrac{4}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{y}=3\\\left|x-1\right|=2-\dfrac{2}{y}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=2-\dfrac{2}{2}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{2;0\right\}\end{matrix}\right.\)
2: \(\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left|x-1\right|-\dfrac{5}{y-1}=-3\\2\left|x-1\right|+\dfrac{4}{y-1}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{9}{y-1}=-9\\\left|x-1\right|+\dfrac{2}{y-1}=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\\left|x-1\right|=3-\dfrac{2}{2}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x\in\left\{3;-1\right\}\end{matrix}\right.\)
3: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x-5}+\dfrac{12}{\sqrt{y}-2}=4\\\dfrac{2}{x-5}-\dfrac{1}{\sqrt{y}-2}=-9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{13}{\sqrt{y}-2}=13\\\dfrac{1}{x-5}=2-\dfrac{6}{\sqrt{y}-2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=9\\\dfrac{1}{x-5}=2-\dfrac{6}{3-2}=2-\dfrac{6}{1}=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x-5=-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{4}\\y=9\end{matrix}\right.\)
Câu 1 :
a)
\(P = a + b - ab = 2 + \sqrt{3} + 2-\sqrt{3} - (2 + \sqrt{3})(2-\sqrt{3})\\ =4 - (2^2 - (\sqrt{3})^2) = 4 - (4 - 3) = 3\)
b)
\(\left\{{}\begin{matrix}3x+y=5\\x-2y=-3\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}3x+y=5\\3x-6y=-9\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}y-\left(-6y\right)=5-\left(-9\right)\\x=\dfrac{5-y}{3}\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}y=2\\x=\dfrac{5-2}{3}=1\end{matrix}\right.\)
Vậy nghiệm của hệ phương trình (x ; y) = (1 ; 2)
Câu 1:
a)
\(P=a+b-ab\\ =2+\sqrt{3}+2-\sqrt{3}-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)\\ =4-\left(4-2\sqrt{3}+2\sqrt{3}-3\right)\\ =4-1=3\)
Vậy \(P=3\)
b)
\(\left\{{}\begin{matrix}3x+y=5\\x-2y=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6x+2y=10\\x-2y=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7x=7\\x-2y=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\1-2y=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\2y=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy pht có nghiệm là \(\left(x;y\right)=\left(1;2\right)\)
Câu 5 :
Ta chứng minh bđt phụ: \(x^5+y^5\ge xy\left(x^3+y^3\right)\forall x\in N\Leftrightarrow x^5+y^5-x^4y-xy^4\ge0\Leftrightarrow\left(x-y\right)x^4-y^4\left(x-y\right)\ge0\Leftrightarrow\left(x-y\right)\left(x^4-y^4\right)\ge0\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\left(x^2+y^2\right)\ge0\)
\(\Rightarrow x^5+y^5\ge xy\left(x^3+y^3\right)\) (1)
\(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\Rightarrow x^3+y^3\ge xy\left(x+y\right)\left(2\right)\)
Áp dụng bđt (1) và (2): \(\Rightarrow\dfrac{ab}{a^5+b^5+ab}\le\dfrac{ab}{ab\left(a^3+b^3\right)+ab}\le\dfrac{ab}{a^2b^2\left(a+b\right)+ab}=\dfrac{1}{ab\left(a+b\right)+1}=\dfrac{abc}{ab\left(a+b+c\right)}=\dfrac{c}{a+b+c}\) Tương tự:
\(\dfrac{bc}{b^5+c^5+bc}\le\dfrac{a}{a+b+c};\dfrac{ca}{c^5+a^5+ca}\le\dfrac{b}{a+b+c}\)
\(\Rightarrow\sum\dfrac{ab}{a^5+b^5+ab}\le\sum\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
Dấu = xảy ra \(\Leftrightarrow a=b=c\)=1
Câu 1:
a) Ta có: \(\left(x+3\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=4\\x+3=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
Vậy: S={1;-7}
b) Ta có: \(\left\{{}\begin{matrix}2x+y-3=0\\\dfrac{x}{4}=\dfrac{y}{3}-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=3\\\dfrac{1}{4}x-\dfrac{1}{3}y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+2y=6\\4x-\dfrac{16}{3}y=-16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{22}{3}y=22\\2x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\2x=3-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(0;3)
Câu 2:
2) Ta có: \(M=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{-\sqrt{x}}{\sqrt{x}-3}\)
Câu 2 :
Gọi : vận tốc của người đi chậm là : x (km/h) ( x > 0 )
Vận tốc của người đi nhanh : x + 4 (km/h)
Vi : người đi chậm đến muộn hơn : 45 phút \(=\dfrac{3}{4}\left(h\right)\)
Khi đó :
\(\dfrac{36}{x}-\dfrac{36}{x+4}=\dfrac{3}{4}\)
\(\Leftrightarrow\left[36\cdot\left(x+4\right)-36x\right]\cdot4=3x\cdot\left(x+4\right)\)
\(\Leftrightarrow3x^2+12x-144=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=12\left(n\right)\\x=16\left(l\right)\end{matrix}\right.\)