K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
G
0
CB
5 tháng 9 2016
Bạn đúng là 1 người tốt bụng , quan tâm tới bạn bè , chắc chắn mọi điều tốt sẽ đến vs bạn
5 tháng 9 2016
Mặc dù mk ko bt bạn Hạ Thì là aiNNhưng mk chúc mừng sinh nhật bạn ấy
Các phương trình : \(x^2+ax+b=0\left(1\right)\) ; \(x^2+bx+c=0\left(2\right)\) ; \(x^2+cx+a=0\left(3\right)\)
Xét : \(\Delta_1=a^2-4b\) ; \(\Delta_2=b^2-4c\) ; \(\Delta_3=c^2-4a\)
Từ \(\begin{cases}a>b>c>0\\a+b+c=12\end{cases}\)\(\Rightarrow\begin{cases}a>4\\c< 4\\a>b>c>0\end{cases}\)
Ta có : \(a>b\Rightarrow4a>4b\Rightarrow a^2-4b>a^2-4a\Rightarrow\Delta_1>a\left(a-4\right)>0\)( vì a>4)
Do đó pt (1) luôn có nghiệm.
Tương tự : \(c< a\Rightarrow4c< 4a\Rightarrow c^2-4a< c^2-4c\Rightarrow\Delta_3< c\left(c-4\right)< 0\) ( vì 0<c<4)
Do đó pt (3) vô nghiệm.
Vậy có phương trình luôn có nghiệm và 1 phương trình vô nghiệm.