Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) có P đồng thời là trung điểm của AB và NM nên ANBM là hình bình hành
b)dễ cm CBNM là hình bình hành
nên MN=BC
c)để ANBM vuông thì ANBM có 1 góc vuông
ta chọn góc đó là góc <AMB
khi đó BM đồng thời là đường thời là đường cao và trung tuyến nên ABC cân tại B
vậy ABC là tam giác vuông cân tại B
c) giống câu a ta dễ cm BMCK là hình bình hành
suy ra BK // BC
mà BN // BC
nên B,K,N thẳng hàng
có BN=AM (ANBM là hình bình hành)
BK=CM (BMCK là hình bình hành)
AM=CM ( M là trung điểm AC)
suy ra BN=BK và B,K,N thẳng hàng
nên N và K đối xứng qua B
Trả lời:
Bài 1:
a, \(\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(4x^2-9\right)\)
\(=8x^3+36x^2+54x+27+8x^3-36x^2+54x-27-8x^2+18\)
\(=16x^3-8x^2+108x+18\)
b, \(\left(x+2\right)^3+\left(x-2\right)^3+x^3-3x\left(x+2\right)\left(x-2\right)\)
\(=x^3+6x^2+12x+8+x^3-6x^2+12x-8+x^3-3x\left(x^2-4\right)\)
\(=3x^3+24x-3x^3+12x=36x\)
Bài 2:
a, \(A=\left(3x+2\right)^2+\left(2x-7\right)^2-2\left(3x+2\right)\left(2x-7\right)\)
\(=\left(3x+2-2x+7\right)^2=\left(x+9\right)^2\)
Thay x = - 19 vào A, ta có:
\(A=\left(-19+9\right)^2=\left(-10\right)^2=100\)
b, \(A=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)
\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+2xy+y^2-2xy\right)\)
\(=2\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)-3\left[\left(x+y\right)^2-2xy\right]\)
\(=2\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]-3\left(x+y\right)^2+6xy\)
\(=2\left(x+y\right)^3-6xy-3\left(x+y\right)^2+6xy\)
\(=2\left(x+y\right)^3-3\left(x+y\right)^2\)
Thay x + y = 1 vào A, ta có:
\(A=2.1^3-3.1^2=-1\)
c, \(B=x^3+y^3+3xy\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)+3xy\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y-1\right)\)
Thay x + y = 1 vào B, ta có:
\(B=1^3-3xy.\left(1-1\right)=1-3xy.0=1-0=1\)
d, \(C=8x^3-27y^3\)
\(=\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\)
\(=\left(2x-3y\right)\left(4x^2-12xy+9y^2+6xy\right)\)
\(=\left(2x-3y\right)\left[\left(2x-3y\right)^2+6xy\right]\)
\(=\left(2x-3y\right)^3+6xy\left(2x-3y\right)\)
Thay xy = 4 và 2x + 3y = 5 vào C, ta có:
\(C\)\(=5^3+6.4.5=125+120=245\)
Trả lời:
Bài 3:
\(A=x^2+x-2=\left(x^2+x+\frac{1}{4}\right)-\frac{9}{4}=\left(x+\frac{1}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\forall x\)
Dấu "=" xảy ra khi \(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy GTNN của \(A=-\frac{9}{4}\Leftrightarrow x=-\frac{1}{2}\)
\(B=x^2+y^2+x-6y+2021\)
\(=x^2+y^2+x-6y+\frac{1}{4}+9+\frac{8047}{4}\)
\(=\left(x^2+x+\frac{1}{4}\right)+\left(y^2-6y+9\right)+\frac{8047}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\left(y-3\right)^2+\frac{8047}{4}\)\(\ge\frac{8047}{4}\forall x;y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}}\)
Vậy GTNN của B = \(\frac{8047}{4}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=3\end{cases}}\)
\(C=x^2+10y^2-6xy-10y+35\)
\(=x^2+9y^2+y^2-6xy-10y+25+10\)
\(=\left(x^2-6xy+9y^2\right)+\left(y^2-10y+25\right)+10\)
\(=\left(x-3y\right)^2+\left(y-5\right)^2+10\ge10\forall x;y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-3y=0\\y-5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=15\\y=5\end{cases}}}\)
Vậy GTNN của C = 10 <=> \(\hept{\begin{cases}x=15\\y=5\end{cases}}\)
\(D=4x-x^2+5\)
\(=-\left(x^2-4x-5\right)\)
\(=-\left(x^2-4x+4-9\right)\)
\(=-\left[\left(x-2\right)^2-9\right]\)
\(=-\left(x-2\right)^2+9\le9\forall x\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của D = 9 <=> x = 2
\(E=-x^2-4y^2+2x-4y+3\)
\(=-x^2-4y^2+2x-4y-1-1+5\)
\(=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+5\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2+5\le5\forall x;y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}}\)
Vậy GTLN của D = 5 <=> \(\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}\)
Các bạn giúp mk làm 5 bài này nhé. mk đang cần gấp. Thanks các bạn nhiều
Mk cần gấp 5 bài này trong hôm nay. Các bạn cố gắng giúp mk. Thanks
a)\(\left(-a+\frac{2}{3}\right)\left(a+\frac{2}{3}\right)=\left(\frac{2}{3}-a\right)\left(\frac{2}{3}+a\right)=\left(\frac{2}{3}\right)^2-a^2=\frac{4}{9}-a^2\)
b)\(\left(x+5\right)\left(x^2-5x+25\right)=x^3+5^3=x^3+125\)
c)\(\left(1-x\right)\left(x^2+x+1\right)=1-x^3\)
d)\(\left(a^2-2a+3\right)\left(a^2+2a+3\right)=\left(a^2+3\right)^2-\left(2a\right)^2=\left(a^2+3\right)^2-4a^2\)
e)\(\left(x+3y\right)\left(9y^2-3xy+x^2\right)=x^3+\left(3y\right)^3=x^3+9y^3\)
f)\(2\left(x-\frac{1}{2}\right)\left(4x^2+2x+1\right)=\left(2x-1\right)\left(4x^2+2x+1\right)=\left(2x\right)^3-1=8x^3-1\)
:D?
Nãy máy mk lag nên ảnh ko lên:,))