Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
9x=10y=z/2 và x-y+z=48
hay y/9=x/10=z/2 (vận dụng tỉ lệ thức) và x-y+z=48
từ tỉ lệ thức 9/y=x/10=z/2 và x-y+z=48
áp dụng dãy tỉ số bằng nhau ta có:
y/9=x/10=z/2=x-y=z/9-10+2=48/1=1
từ y/9=1=>y=1.9=9
x/10=1=>x=1.10=10
z/2=1=>1.2=2
vậy y=9
x=10
z=2
(hơi khó hỉu vì ghi bằng máy tính) thông cảm
b: |2x-1|<5
=>2x-1>-5 và 2x-1<5
=>2x>-4 và 2x<6
=>-2<x<3
mà x là số nguyên dương
nên \(x\in\left\{1;2\right\}\)
Bài 1:
x y m B A C 1 1 2 1
Qua B, vẽ tia Bm sao cho Bm // Ax
Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )
Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o
Ta có: góc B1 + góc B2 = góc ABC
Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )
=> góc B2 = 30o
Ta có: góc B2 + góc C1 = 30o + 150o = 180o
Mà hai góc này ở vị trí trong cùng phía
=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )
Ta lại có:
Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )
=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )
Bài 3:
A B C F E G N M H 1 2
a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )
+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC
=> 2 . AH < AB + AC
=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )
b) Chứng minh EF = BC
+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)
=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)
=> 2 . MG = BG
Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )
=> EM + MG = BG => EG = BG
+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)
=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)
=> 2 . GN = CG
Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )
=> FN + GN = CG => FG = CG
Góc G1 = góc G2 ( đối đỉnh )
Xét tam giác FEG và tam giác CBG có:
FG = CG ( chứng minh trên )
EG = BG ( chứng minh trên )
Góc G1 = góc G2 ( chứng minh trên )
=> tam giác FEG = tam giác CBG ( c.g.c )
=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )
A B C D E H M
a) Xét hai tam giác AMB và DMC có:
MA = MD (gt)
\(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
MB = MC (do AM là đường trung tuyến)
Vậy: \(\Delta AMB=\Delta DMC\left(c-g-c\right)\)
Suy ra: AB = CD (hai cạnh tương ứng)
Mà AC > AB (gt)
\(\Rightarrow\) AC > AD
\(\Delta DAC\) có AC > AD \(\Rightarrow\widehat{ADC}>\widehat{DAC}\) (quan hệ giũa góc và cạnh đối diện trong tam giác).
b) \(\Delta ABC\) có: AC > AB (gt)
\(\Rightarrow\) HB > HC (quan hệ giữa đường xiên - hình chiếu)
\(\Delta EBC\) có: HC > HB (cmt)
\(\Rightarrow\) EC > EB (quan hệ giữa đường xiên - hình chiếu).
Bài 3:
a: \(M\left(x\right)=-2x^4-3x^2-7x-2\)
\(N\left(x\right)=2x^4+3x^2+4x-5\)
\(P\left(x\right)=M\left(x\right)+N\left(x\right)=-2x^4-3x^2-7x-2+2x^4+3x^2+4x-5=-2x-7\)
b: Q(x)+M(x)=N(x)
=>Q(x)=N(x)-M(x)
\(=2x^4+3x^2+4x-5+2x^4+3x^2+7x+2=4x^4+6x^2+11x-3\)