Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
Vì \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y^2-9\right|\ge0\forall y\end{matrix}\right.\)
để bt = 0 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y^2-9=0\Rightarrow y^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy.....
\(\left(x-3\right)^2+\left|y^2-9\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left|y^2-9\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\y^2-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\y^2=9\left[{}\begin{matrix}y=3\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=3\\y=3hoặcy=-3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\xy=6\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}3x=2y\\xy-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\xy-6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3xy-2y^2=0\\3xy-18=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}-2y^2-\left(-18\right)=0\\3xy-2y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\9x-18=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=2\end{matrix}\right.\)
câu b tương tự