giúp mình chi tiết câu này với ạ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2016

bạn chỉ cần tách x4-1  ​thành (x2-1)(x2+1),rồi đặt x2=t là ok

30 tháng 1 2016

\(\frac{1}{12}\)

4 tháng 7 2016

lớp 12 đang thi ! chị đưa cái đo lên ai mà làm !!

4 tháng 2 2016

đặt x =tant 

là xong trong 1 nốt nhạc

4 tháng 2 2016

 

Tách sin^2 = 1-cos^2=(1-cos)(1+cos)

 


Dùng phương pháp đồng nhất hệ số, đưa về thế này

1/cos +1/2(1-cos) -1/2(1+cos)

 

AH
Akai Haruma
Giáo viên
23 tháng 11 2017

Lời giải:

Đặt \(2^{x^2}=t\). Khi đó \(t\geq 1\)

PT trở thành: \(t^2-4t+6=m\Leftrightarrow t^2-4t+(6-m)=0\) (*)

Tư duy:

Nếu (*) có 1 nghiệm duy nhất thì $x^2$ là duy nhất, do đó pt ban đầu chỉ có thể có nhiều nhất 2 nghiệm

Nếu (*) có 2 nghiệm đều khác 1, khi đó $x^2$ có hai giá trị đều khác $0$, kéo theo pt ban đầu có 4 nghiệm

Như vậy, để PT ban đâu có 3 nghiệm thì (*) phải có 2 nghiệm phân biệt , trong đó một nghiệm bằng $1$. Bởi vì khi đó, nghiệm $t$ khác 1 sẽ cho 2 giá trị của $x$, nghiệm $t=1$ cho giá trị $x=0$ duy nhất.

Vậy (*) có nghiệm là $1$, tức là

\(1^2-4.1+(6-m)=0\Leftrightarrow 3-m=0\Leftrightarrow m=3\)

Thử lại thấy thỏa mãn

Đáp án D

19 tháng 6 2016

Đề chính xác chưa bạn

20 tháng 8 2016

limdim

20 tháng 8 2016

lolangBiện luận số số nghiệm, số giao điểm của đồ thi

4 tháng 7 2016

nhờ người ta giải mà cười hihi

em thì bó tay chấm chữ com vào ăn

4 tháng 7 2016

TXĐ: D=R

\(9^{x^2+x-1}-10.3^{x^2+x-2}+1=0\)

\(\Leftrightarrow9^{x^2+x-1}-10.\frac{3^{x^2+x-1}}{3}+1=0\)

Đặt t = \(3^{x^2+x-1}\)      (t>0)

\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}3^{x^2+x-1}=3\\3^{x^2+x-1}=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+x-1=1\\x^2+x-1=\frac{1}{3}\end{array}\right.\)

 

29 tháng 3 2017

Câu nào e đang vướng mắc thì note lại để mọi người giải đáp giúp chứ!

29 tháng 3 2017

đồng ý ! và mình khuyên bạn, bạn nên ghi rõ chỗ nào thắc mắc và bạn đã cố gắng tới đâu, để mình biết mà chỉ