Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.15:
EF vuông góc MH
NP vuông góc MH
Do đó: EF//NP
3.17:
góc yKH+góc H=180 độ
mà hai góc này là hai góc ở vị trí trong cùng phía
nên Ky//Hx
Em thấy bạn Vuông nói đúng
Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.
Ví dụ:
\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh
ta có : Do NB song song với MA nên
\(\hept{\begin{cases}\widehat{ABN}+\widehat{MAB}=180^0\\\widehat{ABN}-\widehat{MAB}=40^0\end{cases}}\Rightarrow2\widehat{MAB}=180^0-40^0=140^0\)
Nên \(\widehat{MAB}=70^0\)
b \(B=\left|x+2\right|+\left|x-5\right|+\left|x-4\right|+\left|x-1\right|\)
\(B=\left|x+2\right|+\left|-x+5\right|+\left|x-4\right|+\left|x-1\right|\)
Đặt a=|x+2|+|x-4|;b=|-x+5|+|x-1|
Ta có \(\left|x+2\right|\ge0;\left|x-4\right|\ge0với\forall x\)
\(\Rightarrow a=\left|x+2\right|+\left|x-4\right|\ge0với\forall x\left(1\right)\)
\(b=\left|-x+5\right|+\left|x-1\right|\ge-x+5+x-1=4với\forall x\left(2\right)\)
Từ (1) và (2)\(\Rightarrow B=a+b\ge4với\forall x\)
B đạt GTNN \(\Leftrightarrow\hept{\begin{cases}x+2\ge0\\x-4\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-2\\x\le4\end{cases}\Leftrightarrow}-2\le x\le4}\)
d \(D=\left|x-2\right|+\left|x-3\right|+\left|x+4\right|+\left|x+5\right|\)
\(D=\left|-x+2\right|+\left|x-3\right|+\left|-x-4\right|+\left|x+5\right|\)
Ta có
\(\left|-x+2\right|+\left|x-3\right|\ge-x+2+x-3=1với\forall\left(1\right)\)
\(\left|-x-4\right|+\left|x+5\right|\ge-x-4+x+5=1với\forall x\left(2\right)\)
Từ(1)và(2)\(\Rightarrow D=\left|-x+2\right|+.....+\left|x+5\right|\ge2\)
D đạt GTNN
3.14:
Ta thấy $\widehat{xNM}=\widehat{xQP}=45^0$. Mà 2 góc này ở vị trí đồng vị nên $MN\parallel PQ$
3.15
$EF\parallel NP$ do cùng vuông góc với $MH$
3.16: Bạn tự vẽ hình nhé.
3.17:
Ta thấy $\widehat{yKH}+\widehat{KHx}=130^0+50^0=180^0$. Mà 2 góc này ở vị trí trong cùng phía nên $Ky\parallel Hx$