K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 9 2023

3.14:

Ta thấy $\widehat{xNM}=\widehat{xQP}=45^0$. Mà 2 góc này ở vị trí đồng vị nên $MN\parallel PQ$

3.15

$EF\parallel NP$ do cùng vuông góc với $MH$

 

AH
Akai Haruma
Giáo viên
9 tháng 9 2023

3.16: Bạn tự vẽ hình nhé.

3.17:

Ta thấy $\widehat{yKH}+\widehat{KHx}=130^0+50^0=180^0$. Mà 2 góc này ở vị trí trong cùng phía nên $Ky\parallel Hx$

3.15:
EF vuông góc MH

NP vuông góc MH

Do đó: EF//NP

3.17:

góc yKH+góc H=180 độ

mà hai góc này là hai góc ở vị trí trong cùng phía

nên Ky//Hx

18 tháng 9 2023

Em thấy bạn Vuông nói đúng

Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.

Ví dụ:

\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh

9 tháng 3 2022

D C A B E m N

kẻ đường thẳng m đi qua E và song song với CD

gọi N là một điểm nằm ở đường thẳng m và phía bên trái (N\(\ne\)E)

=> góc CEm=\(125^o\)

=>góc AEN=180-125+20

=>góc AEN=75độ

Vậy suy ra đường thẳng m//AB(AEN là góc sole trong của đoạn thẳng AB)

mà DC//m=>DC//AB

NM
6 tháng 10 2021

ta có : Do NB song song với MA nên

\(\hept{\begin{cases}\widehat{ABN}+\widehat{MAB}=180^0\\\widehat{ABN}-\widehat{MAB}=40^0\end{cases}}\Rightarrow2\widehat{MAB}=180^0-40^0=140^0\)

Nên \(\widehat{MAB}=70^0\)

15 tháng 8 2021

\(B=\left|x+2\right|+\left|x-5\right|+\left|x-4\right|+\left|x-1\right|\)

 \(B=\left|x+2\right|+\left|-x+5\right|+\left|x-4\right|+\left|x-1\right|\)

Đặt a=|x+2|+|x-4|;b=|-x+5|+|x-1|

Ta có \(\left|x+2\right|\ge0;\left|x-4\right|\ge0với\forall x\)

\(\Rightarrow a=\left|x+2\right|+\left|x-4\right|\ge0với\forall x\left(1\right)\)

\(b=\left|-x+5\right|+\left|x-1\right|\ge-x+5+x-1=4với\forall x\left(2\right)\)

Từ (1) và (2)\(\Rightarrow B=a+b\ge4với\forall x\)

B đạt GTNN \(\Leftrightarrow\hept{\begin{cases}x+2\ge0\\x-4\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-2\\x\le4\end{cases}\Leftrightarrow}-2\le x\le4}\)

\(D=\left|x-2\right|+\left|x-3\right|+\left|x+4\right|+\left|x+5\right|\)

   \(D=\left|-x+2\right|+\left|x-3\right|+\left|-x-4\right|+\left|x+5\right|\)

 Ta có

 \(\left|-x+2\right|+\left|x-3\right|\ge-x+2+x-3=1với\forall\left(1\right)\)

\(\left|-x-4\right|+\left|x+5\right|\ge-x-4+x+5=1với\forall x\left(2\right)\)

Từ(1)và(2)\(\Rightarrow D=\left|-x+2\right|+.....+\left|x+5\right|\ge2\)

D đạt GTNN