Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cậu tự vẽ hình nhá
a) Do D đối xứng với H qua đoạn AB nên tam giác ADH cân tại A
Tam giác ADH có AB là đường cao đồng thời là phân giác
=> góc DAB = góc HAB
Tương tự với tam giác AHE => góc HAC = góc EAC
Ta có :
góc DAE = (góc DAH) + (góc HAE) = 2.(góc BAH) + 2.(góc HAC) = 2.(góc BAH + góc HAC) = 2.90 = 180
=> D,A,E thẳng hàng
Nhận thấy
Tam giác AHC đối xứng với tam giác AEC qua đoạn thẳng AC => góc AHC = góc AEC = 900 (1)
Tương tự , ta cũng có : góc BHA = góc BDA = 900 (2)
Từ (1) và (2) => BD // EC (do 2 góc trong cùng phía bù nhau)
b) Ta có : tam giác BHA đồng dạng với tam giác AHC
Suy ra tỷ lệ \(\frac{BH}{AH}=\frac{AH}{HC}\Leftrightarrow AH^2=BH.HC\)
Mà BH = BD , HC = CE
=> \(AH^2=BD.CE\)
<=> \(4AH^2=4BD.CE\)
<=> \(\left(2AH\right)^2=4BD.CE\) (Do AD = AH = AE)
<=> \(DE^2=4BD.CE\)
a) Theo tính chất một điểm nằm trên đường trung trực thì cách đều 2 đầu mút
=> AD = AH và AH = AE
Xét tam giác BDA và tam giác BHA có :
BA chung
BD = BH (theo tính chất nêu trên) => tam giác BDA = tam giác BHA (1)
AD = AH
Xét tam giác AHC và tam giác AEC có :
AC chung
AH = AE => tam giác AHC = tam giác AEC (2)
CH = CE (như tính chất nêu trên)
Từ (1)
=> \(AD⊥BD\) và \(\widehat{DAB}=\widehat{HAB}\)
Từ (2) ta cũng có :
\(AE⊥CE\) và \(\widehat{HAC}=\widehat{EAC}\)
Ta lại có :
\(\widehat{HAB}+\widehat{HAC}=90^0\)
\(\Rightarrow\widehat{DAB}+\widehat{HAB}+\widehat{HAC}+\widehat{EAC}=2\widehat{HAB}+2\widehat{HAC}=180^0\)
=> D , A , E thẳng hàng
VÀ AD vuông góc với BD
AE vuông góc với CE
MÀ AD , AE thuộc DE
=> BD // CE
Bài 1:
Điểm I ở đâu ra vậy bạn?
Bài 2 :
Điểm E ở đâu ra vậy bạn ????????
1: Ta có: H và D đối xứng nhau qua AB
nên AB là đường trung trực của HD
hay AH=AD(1)
Xét ΔAHD có AH=AD
nên ΔAHD cân tại A
mà AB là đường trung trực ứng với cạnh HD
nên AB là đường phân giác ứng với cạnh HD
Ta có: H và E đối xứng nhau qua AC
nên AC là đường trung trực của HE
Suy ra: AH=AE(2)
Xét ΔAHE có AH=AE
nên ΔAHE cân tại A
mà AC là đường trung trực ứng với cạnh HE
nên AC là đường phân giác ứng với cạnh HE
Từ (1) và (2) suy ra AD=AE(3)
Ta có: \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}\)
\(=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)\)
\(=2\cdot90^0=180^0\)
hay E,A,D thẳng hàng(4)
Từ (3) và (4) suy ra A là trung điểm của ED
hay E và D đối xứng nhau qua A
1: Ta có: H và D đối xứng nhau qua AB
nên AB là đường trung trực của HD
hay AH=AD(1)
Xét ΔADH có AH=AD
nên ΔAHD cân tại A
mà AB là đường trung trực ứng với cạnh HD
nên AB là đường phân giác ứng với cạnh HD
Ta có: H và E đối xứng nhau qua AC
nên AC là đường trung trực của HE
hay AH=AE(2)
Xét ΔAHE có AH=AE
nên ΔAHE cân tại A
mà AC là đường trung trực ứng với cạnh đáy HE
nên AC là đường phân giác ứng với cạnh HE
Từ (1) và (2) suy ra AE=AD(3)
Ta có: \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}\)
\(=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)\)
\(=2\cdot90^0=180^0\)
Suy ra: E,A,D thẳng hàng(4)
Từ (3) và (4) suy ra A là trung điểm của ED
hay D và E đối xứng nhau qua A
2: Xét ΔDHE có
HA là đường trung tuyến ứng với cạnh ED
\(HA=\dfrac{ED}{2}\)
Do đó: ΔDHE vuông tại H
3: Xét ΔAHC và ΔAEC có
AH=AE
\(\widehat{HAC}=\widehat{EAC}\)
AC chung
Do đó: ΔAHC=ΔAEC
Suy ra: \(\widehat{AHC}=\widehat{AEC}\)
hay \(\widehat{AEC}=90^0\)
Xét ΔAHB và ΔADB có
AH=AD
\(\widehat{HAB}=\widehat{DAB}\)
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: \(\widehat{AHB}=\widehat{ADB}\)
hay \(\widehat{ADB}=90^0\)
Xét tứ giác BCED có BD//EC và \(\widehat{DBC}=90^0\)
nên BCED là hình thang vuông
Hình bạn tự vẽ nhé
a, Ta có: D đối xứng với H qua AB \(\Rightarrow\)AB là đường trung trực mà A \(\in\)AB \(\Rightarrow AD=AH\)(1)
Tương tự ta có: \(AH=AE\)(2)
Từ (1), (2) \(\Rightarrow AD=AE\)
\(\Delta ADH\)có: \(AD=AH\left(cmt\right)\Rightarrow\Delta ADH\)cân tại A có AB là đường trung trực \(\Rightarrow\)AB là phân giác của \(\widehat{DAH}\)\(\Rightarrow\widehat{DAB}=\widehat{BAH}\)
Chứng minh tương tự với \(\Delta AHE\)\(\Rightarrow\)AC là phân giác của \(\widehat{HAE}\)\(\Rightarrow\widehat{HAC}=\widehat{CAE}\)
\(\Delta ABC\)có: \(\widehat{BAH}+\widehat{HAC}=90^o\)
Ta có: \(\widehat{DAB}+\widehat{BAH}+\widehat{HAC}+\widehat{CAE}=\widehat{DAE}\)
hay \(2\widehat{BAH}+2\widehat{HAC}=\widehat{DAE}\)
\(2\left(\widehat{BAH}+\widehat{HAC}\right)=\widehat{DAE}\)
\(2.90^o=\widehat{DAE}=180^o\)
\(\Rightarrow\)D, A, E thẳng hàng
mà \(AD=AE\left(cmt\right)\)
\(\Rightarrow\)A là trung điểm của DE
b, Ta có: AB là đường trung trực mà B \(\in\)AB \(\Rightarrow BD=BH\)
Tương tự ta có: \(CH=CE\)
Xét \(\Delta ADB\)và \(\Delta AHB\)có:
AB chung
\(AD=AH\left(cmt\right)\)
\(DB=BH\left(cmt\right)\)
\(\Rightarrow\Delta ADB=\Delta AHB\left(c-c-c\right)\)\(\Rightarrow\widehat{AHB}=\widehat{ADB}=90^o\Rightarrow BD\perp DE\)
Chứng minh tương tự ta có: \(\Delta AHC=\Delta AEC\left(c-c-c\right)\)\(\Rightarrow\widehat{AHC}=\widehat{AEC}=90^o\Rightarrow EC\perp DE\)
Ta có: \(BD\perp DE\left(cmt\right)\)
\(EC\perp DE\left(cmt\right)\)
\(\Rightarrow BD//EC\)
Tứ giác BDEC có: \(BD//EC\left(cmt\right)\)\(\Rightarrow\)BDEC là hình thang có \(\widehat{BDE}=\widehat{DEC}=90^o\Rightarrow\)BDEC là hình thang vuông
\(\Delta\)AHB=\(\Delta\)ADB(c-c-c) thông qua việc chứng minh 2 cặp tam giác nhỏ
=>góc ADB=90(1)
\(\Delta\)AEC=\(\Delta\)AHC(c-c-c)cũng thông qua việc chứng minh 2 cặp tam giác nhỏ
=>góc CEA=90(2)
Mà:D;E;A thẳng hàng(3)
từ 1,2 và 3 suy ra BCED là hình thang
\(\Delta\)AEC đồng dạng \(\Delta\)BDA(g-g)=>BD.CE=AD.AE(1)
\(\Delta\)AIE=\(\Delta\)DKA(g-c-g)=>AE=AD=1/2DE(2)
1 và 2=>BD.CE=DE2/4