Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu Đặt p là nửa chu vi => p = (a + b + c)/2 => 2p = a + b + c
=> p - a = (a + b + c)/2 - a
=> p - a = (b + c + a - 2a)/2
=> p - a = (b + c - a)/2
=> 2(p - a) = b + c - a (1)
Tương tự ta chứng minh được:
2(p - b) = a + c - b (2)
2(p - c) = a + b - c (3)
Từ (1); (2) và (3) => 1/(a + b - c) + 1/(b +c - a) +1/(c +a - b)
= 1/[ 2(p - c) ] + 1/[ 2(p - a) ] + 1/[ 2(p - b) ]
=1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ]
Bây giờ ta đã đưa bài toán về chứng minh
1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c
Ta có: (x - y)² ≥ 0
<=> x² - 2xy + y² ≥ 0
<=> x² - 2xy + y² + 4xy ≥ 4xy
<=> x² + 2xy + y² ≥ 4xy
<=> (x + y)² ≥ 4xy
=> với x + y ≠ 0 và xy ≠ 0
=> (x + y)²/(x+ y) ≥ 4xy/(x + y)
=> (x + y) ≥ 4xy/(x + y)
=> (x + y)/xy ≥ (4xy)/[xy(x + y)]
=> 1/x + 1/y ≥ 4/(x + y) (*)
Áp dụng (*) với x = p - a và y = p - b ta được:
1/(p - a) + 1/(p - b) ≥ 4/(p - a + p - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/(2p - a - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/(a + b + c - a - b)
=> 1/(p - a) + 1/(p - b) ≥ 4/c (4)
Chứng minh tương tự ta được:
1/(p - a) + 1/(p - c) ≥ 4/b (5)
1/(p - b) + 1/(p - c) ≥ 4/a (6)
Cộng vế với vế của (4);(5) và (6) ta được:
1/(p - a) + 1/(p - b) + 1/(p - a) + 1/(p - c) + 1/(p - b) + 1/(p - c) ≥ 4/c + 4/b + 4/a
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4/c + 4/b + 4/a
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4(1/a + 1/b + 1/c)
=> 1/(p - a) + 1/(p - b) + 1/(p - c) ≥ 2(1/a + 1/b + 1/c)
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/2.( 2(1/a + 1/b + 1/c) )
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c
Dấu bằng xảy ra <=> a = b = c.
ta có \(P=a^3+b^3+c^3+3abc=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)+3abc\)
\(=1-3\left(1-a\right)\left(1-b\right)\left(1-a\right)+3abc\)
nhân tung ra và rút gọn thì \(P=1-3\left(ab+bc+ca\right)+6abc=1-3\left(ab+bc+ca-2abc\right)\)
vì \(b+c>a\Rightarrow a+b+c\ge2a\Rightarrow2a-1< 0\)
tương tự với mấy cái kia nhân vaò và ta có
\(\left(2a-1\right)\left(2b-1\right)\left(2c-1\right)< 0\)\(\Leftrightarrow8abc-4\left(ab+bc+ca\right)+2\left(a+b+c\right)-1< 0\)
=> \(1< 4\left(ab+bc+ca\right)-8abc\Rightarrow\frac{1}{4}< \left(ab+bc+ca-2abc\right)\)
=> \(\Rightarrow-3\left(ab+bc+ca-2abc\right)< -\frac{3}{4}\)
=> \(1-3\left(ab+bc+ca-2abc\right)< \frac{1}{4}\) => p<1/4
B) ta có \(\left(a+b-c\right)\left(a-b+c\right)\left(b+c-a\right)=\sqrt{\left[b^2-\left(a-c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\left[c^2-\left(a-b\right)^2\right]}< abc\)
=> \(\left(1-2a\right)\left(1-2b\right)\left(1-2c\right)< abc\)
=> \(4\left(ab+bc+ca-2abc\right)\le abc+1\le\left(\frac{a+b+c}{3}\right)^3+1=\frac{28}{27}\)
=> \(ab+bc+ca-abc\le\frac{7}{27}\)
=> \(P\ge1-3.\frac{7}{27}=\frac{2}{9}\)
Ta có a+b+c=1;a;b;c>0 nên
P=a3+b3+c3+3abc
=(a+b+c)3-3(a+b)(b+c)(c+a)+3abc
=1-3abc-3∑ab(a+b)
=1-3abc-3∑ab(1-c)
=1-3(ab+bc+ca)+6abc
Vì a;b;c là 3 cạnh của một tam giác nên
b+c>a=>a+b+c>2a=>2a<1. Tương tự 2b<1;2c<1
Nên (2a-1)(2b-1)(2c-1)<0
<=> 8abc-4(ab+bc+ca)+2(a+b+c)-1<0
=>4[ab+bc+ca-2abc]>1
=>P<1/4
Ta có:
(a+b-c)(b+c-a)(c+a-b)=
\(\sqrt{\left[b^2-\left(a-c\right)^2\right].\left[a^2-\left(b-c\right)^2\right].\left[c^2-\left(a-b\right)^2\right]}\)≤abc
=>(1-2a)(1-2b)(1-2c)≤abc
=>4[ab+bc+ca-2abc]≤abc+1≤\(\left(\frac{a+b+c}{3}\right)^3+1=\frac{28}{27}\)
=>P≥1-3.\(\frac{28}{4.27}=\frac{2}{9}\)
Dấu = xảy ra khi a=b=c=\(\frac{1}{3}\)
trời mãi ms xong
3) Đặt b+c=x;c+a=y;a+b=z.
=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2
BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)
VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)
\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)
Dấu''='' tự giải ra nhá
Bài 4
dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)
\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)
rồi khai căn ra \(\Rightarrow\)dpcm.
đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)