Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác OBI vuông tại B và tam giác OAI vuông tại A có:
^AOI = ^BOI ( do ƠI là tia phân giác của goc xoy)
OI là cạnh chung
=> tg OBI = tg OAI ( cạnh huyền - góc nhọn)
xin lỗi nka, câu b và câu c mình ko biết làm
Mk giải câu a) nhé, do câu b) là vẽ hình, còn câu c) bn chờ mk suy nghĩ, hơi khó
Gọi Ot là tia p/g của g.xOy
Xét tg vuông OBI và tg vuông OAI có:
OI cạnh chung
g.BOI = g.AOI ( Ot là tia p/g của g.xOy)
=> tg OBI = tg OAI (cạnh huyền - góc nhọn)
P/s: sửa I là điểm chứ không phải là trung điểm
Hình tự vẽ :<
a) Xét \(\Delta\)AOI và \(\Delta\)BOI có:
IAO=IBO (=90o)
IO: chung
AOI=BOI (OI: p/g AOB)
\(\Rightarrow\Delta\)AOI=\(\Delta\)BOI (ch-gn)
\(\Rightarrow\)IA=IB (2 cạnh tương ứng)
b) Xét \(\Delta\)KOB và \(\Delta\)MOA có:
KBO=MAO (\(\Delta\)AOI=\(\Delta\)BOI)
OB=OA ( \(\Delta\)AOI=\(\Delta\)BOI)
O: chung
\(\Rightarrow\)\(\Delta\)KOB=\(\Delta\)MOA (g.c.g)
\(\Rightarrow\)OK=OM (2 cạnh tương ứng)
Ta có:
\(\hept{\begin{cases}OA+AK=OK\\OB+BM=OM\end{cases}}\)mà \(\hept{\begin{cases}OA=OB\\OK=OM\end{cases}}\)
\(\Rightarrow\)AK=BM
c) Ta có: OM=OK (cmt)
\(\Rightarrow\)\(\Delta\)KOM cân tại O
\(\Rightarrow\)OMK=OKM
Xét \(\Delta\)OCM và \(\Delta\)OCK có:
OMK=OKM (cmy)
OC: chung
COM=COK (OC: p/g MOK)
\(\Rightarrow\)\(\Delta\)OCM=\(\Delta\)OCK (g.c.g)
\(\Rightarrow\)OCM=OCK (2 góc tương ứng)
Mà OCM+OCK=180o (kề bù)
\(\Rightarrow\)OCM=OCK=180o:2=90o
\(\Rightarrow\)OC \(\perp\) MK
hình tự kẻ nghen:3333
a) vì I thuộc tia phân giác của xOy=> I cách đều Ox và Oy => IA=IB, IK=IM
ta có IA+IM=IB+IK=> MA=BK
vì IA vuông góc với Ox tại A=> AKI+KIA=90 độ
vì IB vuông góc với Oy tại B=> BMI+MIB=90 độ
mà KIA=MIB( đối đỉnh)
=> AKI=BMI
xét tam giác OAM và tam giác OBK có
AKI=BMI(cmt)
AM=BK(cmt)
OAM=OBK(= 90 độ)
=> tam giác OAM= tam giác OBK( gcg)
=> OK=OM( hai cạnh tương ứng)
b Xét tam giác OAI và tam giác OBI có
OAI=OBI( =90 độ)
OI chung
O1=O2( gt)
=> tam giác OAI= tam giác OBI( ch-gnh)
=> OA=OB( hai cạnh tương ứng)
ta có OK-OA=OM-OB
=> AK=BM
c)Xét tam giác KOC và tam giác MOC có
OK=OM(cmt)
O1=O2(gt)
OC chung
=> tam giác KOC= tam giác MOC(cgc)
=> C1=C2( hai góc tương ứng)
mà C1+C2= 180 độ( kề bù)
=> C1=C2=90 độ=> OC vuông góc với MK