K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

a) \(\left(-\dfrac{2}{3}+\dfrac{3}{7}\right):\dfrac{4}{5}+\left(-\dfrac{1}{3}+\dfrac{4}{7}\right):\dfrac{4}{5}\)

= \(\left(-\dfrac{2}{3}+\dfrac{3}{7}-\dfrac{1}{3}+\dfrac{4}{7}\right):\dfrac{4}{5}\)

= \(0:\dfrac{4}{5}\)

= 0

b) \(\dfrac{5}{9}\left(\dfrac{1}{11}-\dfrac{5}{22}\right)+\dfrac{5}{9}\left(\dfrac{1}{15}-\dfrac{2}{3}\right)\)

= \(\dfrac{5}{9}:\left(\dfrac{1}{11}-\dfrac{5}{22}+\dfrac{1}{15}-\dfrac{2}{3}\right)\)

= \(\dfrac{5}{9}:-\dfrac{81}{110}\)

= \(-\dfrac{550}{729}\)

6 tháng 9 2017

Giải:

a) \(\left(\dfrac{-2}{3}+\dfrac{3}{7}\right):\dfrac{4}{5}+\left(\dfrac{-1}{3}+\dfrac{4}{7}\right):\dfrac{4}{5}\)

\(=\left[\left(\dfrac{-2}{3}+\dfrac{2}{7}\right)+\left(\dfrac{-1}{3}+\dfrac{4}{7}\right)\right]:\dfrac{4}{5}\)

\(=\left(\dfrac{-2}{3}+\dfrac{2}{7}-\dfrac{1}{3}+\dfrac{4}{7}\right):\dfrac{4}{5}\)

\(=\left(-1+1\right):\dfrac{4}{5}\)

\(=0:\dfrac{4}{5}\)

\(=0.\dfrac{4}{5}\)

\(=0\)

b) \(\dfrac{5}{9}:\left(\dfrac{1}{11}-\dfrac{5}{22}\right)+\dfrac{5}{9}:\left(\dfrac{1}{15}-\dfrac{2}{3}\right)\)

\(=\dfrac{5}{9}:\left(\dfrac{2}{22}-\dfrac{5}{22}\right)+\dfrac{5}{9}:\left(\dfrac{1}{15}-\dfrac{10}{15}\right)\)

\(=\dfrac{5}{9}:\dfrac{-3}{22}+\dfrac{5}{9}:\dfrac{-3}{5}\)

\(=\dfrac{5}{9}:\left(\dfrac{-3}{22}-\dfrac{3}{5}\right)\)

\(=\dfrac{5}{9}:\left(\dfrac{-3}{22}-\dfrac{3}{5}\right)\)

\(=\dfrac{5}{9}:\dfrac{-81}{110}\)

\(=-\dfrac{550}{729}\)

Chúc bạn học tốt!!!

6 tháng 9 2017

dap an bai 16 trang 12 toan 7

6 tháng 9 2017

a,

\(\left(\dfrac{-2}{3}+\dfrac{3}{7}\right):\dfrac{4}{5}+\left(-\dfrac{1}{3}+\dfrac{4}{7}\right):\dfrac{4}{5}\)

\(=\left(\dfrac{-2}{3}+\dfrac{-1}{3}+\dfrac{3}{7}+\dfrac{4}{7}\right):\dfrac{4}{5}\)

\(=\left(-1+1\right):\dfrac{4}{5}=0\)

b,

10 tháng 9 2017

a a' a//a' mk chưa chắc đã đúng :D

5 tháng 4 2017

a) \(\left(x-3\right)\left(x-2\right)< 0\)

Ta có : \(x-2>x-3\)

\(\Rightarrow\left\{{}\begin{matrix}x-3< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\Rightarrow2< x< 3\)

Vậy \(2< x< 3\)

b) \(3x+x^2=0\)

\(x\left(3+x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\3+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

Vậy \(x\in\left\{-3;0\right\}\)

8 tháng 9 2017

2. GTLN

có A= x - |x|

Xét x >= 0 thì A= x - x = 0 (1)

Xét x < 0 thì A=x - (-x) = 2x < 0 (2)

Từ (1) và (2) => A =< 0

Vậy GTLN của A bằng 0 khi x >= 0

Bài1:

\(C=x^2+3\text{|}y-2\text{|}-1\)

Với mọi x;ythì \(x^2>=0;3\text{|}y-2\text{|}>=0\)

=>\(x^2+3\text{|}y-2\text{|}>=0\)

Hay C>=0 với mọi x;y

Để C=0 thì \(x^2=0\)\(\text{|}y-2\text{|}=0\)

=>\(x=0vày-2=0\)

=>\(x=0và.y=2\)

Vậy....

23 tháng 4 2017

Giải:

Do \(\left(2016a+13b-1\right)\left(2016^a+2016a+b\right)\) \(=2015\)

Nên \(2016a+13b-1\)\(2016^a+2016a+b\) là 2 số lẻ \((*)\)

Ta xét 2 trường hợp:

Trường hợp 1: Nếu \(a\ne0\) thì \(2016^a+2016a\) là số chẵn

Do \(2016^a+2016a+b\) lẻ \(\Rightarrow b\) lẻ

Với \(b\) lẻ \(\Rightarrow13b-1\) chẵn do đó \(2016a+13b-1\) chẵn (trái với \((*)\))

Trường hợp 2: Nếu \(a=0\) thì:

\(\left(2016.0+13b-1\right)\left(2016^0+2016.0+b\right)\) \(=2015\)

\(\Leftrightarrow\left(13b-1\right)\left(b+1\right)=2015=1.5.13.31\)

Do \(b\in N\Rightarrow\left(13b-1\right)\left(b+1\right)=5.403=13.155\) \(=31.65\)

\(13b-1>b+1\)

\(*)\) Nếu \(b+1=5\Rightarrow b=4\Rightarrow13b-1=51\) (loại)

\(*)\) Nếu \(b+1=13\Rightarrow b=12\Rightarrow13b-1=155\) (chọn)

\(*)\) Nếu \(b+1=31\Rightarrow b=30\Rightarrow13b-1=389\) (loại)

Vậy \(\left(a,b\right)=\left(0;12\right)\)

14 tháng 12 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x-1}{2005}=\dfrac{3-y}{2006}=\dfrac{x-1+3-y}{2005+2006}=\dfrac{x-y-1+3}{4011}=\dfrac{4009-1+3}{4011}=\dfrac{4011}{4011}=1.\)

Từ đó:

\(\dfrac{x-1}{2005}=1\Rightarrow x-1=2005\Rightarrow x=2006.\)

\(\dfrac{3-y}{2006}=1\Rightarrow3-y=2006\Rightarrow y=-2003.\)

Vậy \(x=2006;y=-2003.\)

6 tháng 2 2017

Yêu cầu của bài là j vậy?

5 tháng 3 2017

Ta có:

(\(\dfrac{a}{b}\))3=\(\dfrac{1}{8000}\)

\(\Rightarrow\)(\(\dfrac{a}{b}\))3=(\(\dfrac{1}{20}\))3

\(\Rightarrow\)\(\dfrac{a}{b}\)=\(\dfrac{1}{20}\)

Theo tính chất tỉ lệ thức và tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{1}\)=\(\dfrac{b}{20}\)=\(\dfrac{a+b}{1+20}\)=\(\dfrac{42}{21}\)=2

\(\Rightarrow\)b=2.20=40

Vậy b=40

Học tốt!vui

5 tháng 3 2017

Ahihi em chịu ....!limdim

13 tháng 10 2017

A M E B D C

a) Vì \(\widehat{ACE}\)\(\widehat{BAC}\) là hai góc so le trong

=> \(AB//CE\) ( tính chất hai đường thẳng song song )

b) Vì AD là tia phân giác của \(\widehat{BAC}\Rightarrow\widehat{BAD}=\widehat{DAC}\)

Vì CM là tia phân giác của \(\widehat{ACE}\Rightarrow\widehat{ACM}=\widehat{MCE}\)

Ta có : \(\widehat{ACE}=\widehat{BAC}\) ( so le trong )

=>\(\dfrac{1}{2}\widehat{ACE}=\dfrac{1}{2}\widehat{BAC}\)

hay \(\widehat{DAC}=\widehat{ACM}\)

Mà hai góc này nằm ở vị trí so le trong \(\Rightarrow AD//CM\)

13 tháng 10 2017

a. Ta có: \(\widehat{BAC}=\widehat{ACE}\left(gt\right)\)

Mà hai góc này ở vị trí số le trong

\(\Rightarrow AB//CE\)

b. Ta có: \(\widehat{BAD}=\widehat{CAD}=\dfrac{1}{2}\widehat{BAC}\) (AD là phân giác của \(\widehat{BAC}\))

\(\widehat{ACM}=\widehat{MCE}=\dfrac{1}{2}\widehat{ACE}\) (CM là phân giác của \(\widehat{ACE}\) )

\(\widehat{BAC}=\widehat{ACE}\left(gt\right)\)

\(\Rightarrow\widehat{CAD}=\widehat{ACM}\) mà hai góc này ở vị trí so le trong

\(\Rightarrow AD//CM\)

25 tháng 7 2017

Hehehe!oaoa Dễ tek mà ko làm đc!bucqua

Nhớ mối thù năm xưa chứ e.eoeoleuleu

25 tháng 7 2017

sí sào, ai thèm mày giúp.

hiha