Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)B có 10
B=(3+3^2)+(3^3+3^4)+....+(3^9+3^10)
B=3.(1+3)+3^3.(1+3)+....+3^9.(1+3)
B=4.(3+3^3+....+3^9) chia hết cho 4
Vậy B chia hết cho 4
b)B=
Ta có :
\(C+3^{101}=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+.....+3^{96}\left(1+3+3^2\right)+3^{99}\left(1+3+3^2\right)\)
\(C+3^{101}=13+3^3.13+.....+3^{96}.13+3^{99}.13\)
=> C+3101 chia hết cho 13
Mặt khác 3101 không chia hết cho 13
=> C không chia hết cho 13
Ta có :
\(C=\left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+....+7^{27}\left(1+3+3^2\right)+7^{30}\)
\(C=57+7^3.57+....+7^{27}.57+7^{30}\)
Mà 7^30 không chia hết cho 57
=> C không chia hết cho 57
Dễ thấy a1b1 = 3.3 = 9.1 = c1d1 và a2b2 = 2.(-5) =(-1).10 =c2d2
P(x) = (9x2 – 9x – 10)(9x2 + 9x – 10) + 24x2
Đặt y = (3x +2)(3x – 5) = 9x2 – 9x – 10 thì P(x) trở thành:
Q(y) = y(y + 10x) = 24x2
Tìm m.n = 24x2 và m + n = 10x ta chọn được m = 6x , n = 4x
Ta được: Q(y) = y2 + 10xy + 24x2
= (y + 6x)(y + 4x)
Do đó: P(x) = ( 9x2 – 3x – 10)(9x2 – 5x – 10).
Câu 3:
a: \(\Leftrightarrow n-1+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)
b: \(\Leftrightarrow4n+2+1⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-1\right\}\)
c: \(\Leftrightarrow4n-5=13k\left(k\in Z\right)\)
\(\Leftrightarrow n=\dfrac{13k+5}{4}\)
a) (x-14):2=24-3
(x-14):2 = 13
x-14 = 13.2
x-14 = 26
x = 26 + 14
x = 40
b) x572 = x <=> x = 1 hoặc 0
a, b làm như trên nha, còn mấy bìa còn lại :
M=1+2+22+...+211
M = \(\left(1+2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}+2^{11}\right)\)
M = (1+2+4+8+16+32) + 26( 1 + 2 + 22+23+24+25)
M = 63 + 26.63
M = 63 ( 1+ 26)
M= 9.7 (1 + 2^6) chia hết cho 9 => M chia hết cho 9
S=3 + 32 +33 +.....+ 39
S = \(\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)
S = \(3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\)
S= 3. 13 + 3^4.13 + 3^7.13
S= 13 ( 3 +3^4+3^4) chia hết cho 13 => S chia hết cho 13
M= 2+ 22 + 23+....+210
M= \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
M = \(2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
\(M=2.3+2^3.3+...+2^9.3\)
M = 3( 2+ 2^3 +...+ 2^9) chia heets cho 3
=> M chia hết cho 3
A= 7+ 72 + 73 +.....+78
A= \(\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
A= \(7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)\)
A= 7. 400 + 7^5 . 400
A = 400( 7+7^5)
A = 5 . 80 ( 7+7^5) chia hết cho 5 => A chia hết cho 5
Đặt A = 3² + 3³ + 3⁴ + ... + 3⁹⁹
= 3² + 3³ + (3⁴ + 3⁵ + 3⁶) + (3⁷ + 3⁸ + 3⁹) + ... + (3⁹⁷ + 3⁹⁸ + 3⁹⁹)
= 36 + 3⁴.(1 + 3 + 3²) + 3⁷.(1 + 3 + 3²) + ... + 3⁹⁷.(1 + 3 + 3²)
= 36 + 3⁴.13 + 3⁷.13 + ... + 3⁹⁷.13
= 36 + 13.(3⁴ + 3⁷ + ... + 3⁹⁷)
Do 36 không chia hết cho 13
13.(3⁴ + 3⁷ + ... + 3⁹⁷) ⋮ 13
⇒ 36 + 13.(3⁴ + 3⁷ + ... + 3⁹⁷) không chia hết cho 13
⇒ A không chia hết cho 13
Em xem lại đề nhé, có thể em viết thiếu số 3 rồi