Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải
a) Ta có:
VP=(a+b)3−3ab(a+b)
=a3+3a2b+3ab2+b3−3a2b−3ab2
=a3+b3=VT (đpcm)
b) Ta có:
VP=(a−b)3+3ab(a−b)
=a3−3a2b+3ab2−b3+3a2b−3ab2
=a3−b3=VT (đpcm)
Áp dụng:
Với ab=12 và a+b=−7 ta có:
a3+b3=(a+b)3−3ab(a+b)
=(−7)3−3.12.(−7)=−91
a: \(\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2\)
\(=a^3+b^3\)
b: \(\left(a-b\right)^3+3ab\left(a-b\right)\)
\(=a^3-3a^2b+3ab^2-b^3+3a^2b-3ab^2\)
\(=a^3-b^3\)
a) HS tự chứng minh.
b) Áp dụng tính được:
i) 9261; ii) 7880599;
iii) 5840; iv) 12140.
a) \(a^3+b^3=\left(a^3+b^3+3a^2b+3ab^2\right)-3a^2b-3ab^2=\left(a+b\right)^3-3ab\left(a+b\right)\)=> điều phải c/m
b) \(a^3-b^3=\left(a^3-b^3-3a^2b+3ab^2\right)+3a^2b-3ab^2=\left(a-b\right)^3+3ab\left(a-b\right)\)=> đpcm
c) \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=-5^3-3.6.\left(-5\right)=-35\)
chứng mih rằng
a) a^3 + b^3= (a+b)^3 - 3ab (a+b)
b) a^3 - b^3= (a-b)^3 +3ab (a-b)
áp dụng: tính a^3 +b^3, biết a.b= 6 ; a+b = -5
Được cập nhật {timing(2017-08-24 22:01:41)}
Toán lớp 8 Hằng đẳng thức
Nguyễn Thị BÍch Hậu 17/06/2015 lúc 13:34
Thống kê hỏi đáp
Báo cáo sai phạm
a) a3+b3=(a3+b3+3a2b+3ab2)−3a2b−3ab2=(a+b)3−3ab(a+b)=> điều phải c/m
b) a3−b3=(a3−b3−3a2b+3ab2)+3a2b−3ab2=(a−b)3+3ab(a−b)=> đpcm
c) a3+b3=(a+b)3−3ab(a+b)=−53−3.6.(−5)=−35
Đúng 5 Học toán ngu ngu ấy mà đã chọn câu trả lời này.
a) a3 + b3 = (a + b)3 – 3ab(a + b)
Thực hiện vế phải:
(a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2
= a3 + b3
Vậy a3 + b3 = (a + b)3 – 3ab(a + b)
b) a3 – b3 = (a – b)3 + 3ab(a – b)
Thực hiện vế phải:
(a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2
= a3 – b3
Vậy a3 – b3 = (a – b)3 + 3ab(a – b)
Áp dụng:
Với ab = 6, a + b = -5, ta được:
a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)
= -53 + 3 . 6 . 5 = -125 + 90 = -35.
a) Ta có : a3 + b3 = (a + b)3 – 3ab(a + b)
=> VP = (a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2
= a3 + b3
Vậy a3 + b3 = (a + b)3 – 3ab(a + b)
b) a3 – b3 = (a – b)3 + 3ab(a – b)
=> VP = (a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2
= a3 – b3
Vậy a3 – b3 = (a – b)3 + 3ab(a – b)
Áp dụng:
Với ab = 6, a + b = -5, ta được:
a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)
= -53 + 3 . 6 . 5 = -125 + 90 = -35.
\(\frac{OA}{OB}=1+\frac{AB}{OB}=1+\frac{AB}{\frac{1}{2}BD}=1+2.2=5\).. BD/AB=1/2 CMT nha
Có OB+OC=BC\(\Leftrightarrow\frac{1}{2}BD+OC=\frac{2}{3}BD\Leftrightarrow OC=\frac{1}{6}BD\)
Vậy \(\frac{OB}{OC}=\frac{\frac{1}{2}BD}{\frac{1}{6}BD}=3\)
\(\frac{OA}{OB}=\frac{OB}{OC}\) sao ko bằng kết quả kiểm tra lại nha..>>>Buồn ngủ uqa rồi
Có \(\frac{AB}{AD}+1=\frac{5}{3}\Leftrightarrow\frac{BD}{AD}=\frac{5}{3}\)
Và \(\frac{CB}{CD}+1=\frac{5}{3}\Leftrightarrow\frac{CB}{BD}=\frac{5}{3}\)...Thay BD vào để tính
bài 1:
a. \((x+1)(x+3) - x(x+2)=7 \)
\(x^2+ 3x +x +3 - x^2 -2x =7\)
\(x^2+4x+3-x^2-2x=7\)
\(=> 2x+3=7\)
\(2x=4\)
\(x = 2\)
Bài 2:
a)
\((3x-5)(2x+11) -(2x+3)(3x+7) \)
\(= 6x^2 +33x-10x-55-6x^2-14x-9x-10\)
\(= (6x^2-6x^2)+(33x-10x-14x-9x)-(55+10)\)
\(=-65\)
\(\)
Có \(\left(a^3-3ab^2\right)^2=a^6-6a^4b^2+9a^2b^4=25\)(1)
\(\left(b^3-3a^2b\right)^2=b^6-6a^4b^2+9a^2b^4=100\)(2)
cộng (1) và (2) có \(a^6+3a^2b^4+3a^4b^2+b^6=\left(a^2+b^2\right)^3=125\Leftrightarrow a^2+b^2=5\)
a/CM: \(\left(\frac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng với mọi a,b>0)
CM: \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)
\(\Leftrightarrow\frac{2\left(a^2+b^2\right)}{4}\ge\frac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)
b/CM: \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)
\(\Leftrightarrow\frac{4\left(a^3+b^3\right)}{8}\ge\frac{\left(a+b\right)^3}{8}\)
\(\Leftrightarrow3\left(a^3+b^3\right)\ge3a^2b+3ab^2\)
\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) ( luôn đúng với mọi a,b>0)
c/CM: \(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+b^2+ab\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+\frac{2ab}{2}+\frac{b^2}{4}+\frac{3b^2}{4}\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right)\ge0\) ( luôn đúng)
d/Ta xét hiệu: \(a^4-4a+3\)
\(=a^4-2a^2+1+2a^2-4a+2\)
\(=\left(a-1\right)^2+2\left(a-1\right)^2\ge0\)
Suy ra BĐT luôn đúng
e/Ta xét hiệu:( Làm nhanh)
\(a^3+b^3+c^3-3abc\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\)
f/Ta có: \(\frac{a^6}{b^2}-a^4+\frac{a^2b^2}{4}+\frac{b^6}{a^2}-b^4+\frac{a^2b^2}{4}\)
\(=\left(\frac{a^3}{b}-\frac{ab}{2}\right)^2+\left(\frac{b^3}{a}-\frac{ab}{2}\right)^2\ge0\)(1)
Mà \(\frac{a^2b^2}{4}+\frac{a^2b^2}{4}\ge0\)(2)
Lấy (1) trừ (2) được: \(\frac{a^6}{b^2}+\frac{b^6}{a^2}-a^4-b^4\ge0\RightarrowĐPCM\)
g/Làm rồi..xem lại trong trang cá nhân
h/Xét hiệu có: \(\left(a^5+b^5\right)\left(a+b\right)-\left(a^4+b^4\right)\left(a^2+b^2\right)\)
\(=a^5b+ab^5-a^2b^4-a^4b^2\)
\(=a^4b\left(a-b\right)-ab^4\left(a-b\right)\)
\(=ab\left(a^2-b^2\right)\left(a-b\right)\)
\(=ab\left(a+b\right)\left(a-b\right)^2\ge0\forall ab>0\)
Suy ra ĐPCM
a)
a) a3 + b3
= (a + b)(a2 - ab + b2)
= (a + b)(a2 + 2ab + b2 - 3ab)
= (a + b)[(a + b)2 - 3ab] = (a + b)3 - 3ab(a + b)
b)
(a - b)3 + 3ab(a - b)
= a3 - 3a2.b + 3.ab2 - b3+ 3a2b - 3ab2
= a3- b3
áp dụng
\(a^3+b^3\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(-5\right)^3-3.6.\left(-5\right)\)
\(=-125+90\)
\(=-35\)
cảm ơn bạn nha