K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

Xét hiệu:

\(C=1-\dfrac{7^{2011}+1}{7^{2013}+1}=\dfrac{7^{2011}\left(7^2-1\right)}{7^{2013}+1}=\dfrac{48.7^{2011}}{7^{2013}+1}\)

\(D=1-\dfrac{7^{2013}+1}{7^{2015}+1}=\dfrac{7^{2013}\left(7^2-1\right)}{7^{2015}+1}=\dfrac{48.7^{2013}}{7^{2015}+1}\)

Ta có:

\(\dfrac{C}{D}=\dfrac{48.7^{2011}}{7^{2013}+1}\cdot\dfrac{7^{2015}+1}{48.7^{2013}}=\dfrac{7^{2015}+1}{\left(7^{2013}+1\right)\cdot7^2}=\dfrac{7^{2015}+1}{7^{2015}+49}< 1\)

=> C<D =>A>B

9 tháng 7 2017

b, Ta có:

\(14A=\dfrac{7^{2013}+14}{7^{2013}+1}=\dfrac{7^{2013}+1+13}{7^{2013}+1}=\dfrac{7^{2013}+1}{7^{2013}+1}+\dfrac{13}{7^{2013}+1}=1+\dfrac{13}{7^{2013}+1}\)

\(14B=\dfrac{7^{2015}+14}{7^{2015}+1}=\dfrac{7^{2015}+1+13}{7^{2015}+1}=\dfrac{7^{2015}+1}{7^{2015}+1}+\dfrac{13}{7^{2015}+1}=1+\dfrac{13}{7^{2015}+1}\)

\(\)\(7^{2013}+1< 7^{2015}+1\)

\(\dfrac{\Rightarrow13}{7^{2013}+1}>\dfrac{13}{7^{2015}+1}\)

\(\Rightarrow1+\dfrac{13}{7^{2013}+1}>1+\dfrac{13}{7^{2015+1}}\)

\(\Leftrightarrow14A>14B\)

\(\Rightarrow A>B\)

2.A=\(\dfrac{43.11}{2011^{2013}}\)+\(\dfrac{79}{2011^{2013}}\)=\(\dfrac{43.11+79}{2011^{2013}}\)

B=\(\dfrac{79.11}{2011^{2013}}\)+\(\dfrac{43}{2011^{2013}}\)=\(\dfrac{79.11+43}{2011^{2013}}\)

Ta có: 43.11+79=43.(10+1)+79=43.10+43+79=430+122

79.11+43=79.(10+1)+43=79.10+79+43=790+122

Vì 430+122<790+122 nên 43.11+79<79.11+43 (1)

Mà 20112013<20112013 (2)

Từ (1) và (2) suy ra A<B

3. A=\(\dfrac{2010.2012}{2011.2011}\)

Vì B<1 nên B>\(\dfrac{2010}{2012}\)=\(\dfrac{2010.2012}{2012.2012}\)

Vì 2010.2012=2010.2012; 2011.2011<2012.2012 nên B>A

4. A=\(\dfrac{3n}{3\left(2n+1\right)}\)=\(\dfrac{3n}{6n+3}\)

Vì 6n+3=6n+3; 3n<3n+1 nên A<B

20 tháng 4 2018

\(A=1+\dfrac{\dfrac{\left(1+2\right).2}{2}}{2}+\dfrac{\dfrac{\left(1+3\right).3}{2}}{3}+...+\dfrac{\dfrac{\left(1+2013\right).2013}{2}}{2013}\)

\(A=1+\dfrac{\dfrac{3.2}{2}}{2}+\dfrac{\dfrac{4.3}{2}}{3}+...+\dfrac{\dfrac{2014.2013}{2}}{2013}\)

\(A=1+\dfrac{3}{2}+\dfrac{2.3}{3}+...+\dfrac{1007.2013}{2013}\)

\(A=1+\dfrac{3}{2}+2+\dfrac{5}{2}...+1007\)

\(2A=2+3+4+5+6+...+2012+2013+2014\)

\(2A=\dfrac{\left(2+2014\right).2013}{2}\)

\(A=\dfrac{2016.2013}{4}=504.2013\)

20 tháng 4 2018

\(B=\dfrac{-2}{1.3}+\dfrac{-2}{2.4}+...+\dfrac{-2}{2012.2014}+\dfrac{-2}{2013.2015}\)

\(-B=\dfrac{2}{1.3}+\dfrac{2}{2.4}+...+\dfrac{2}{2012.2014}+\dfrac{2}{2013.2015}\)

\(-B=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2012.2014}\right)\)

\(-B=\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+...+\dfrac{2015-2013}{2013.2015}\right)+\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2014-2012}{2012.2014}\right)\)

\(-B=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{2013}-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}+...+\dfrac{1}{2012}-\dfrac{1}{2014}\right)\)

\(-B=\left(1-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2014}\right)\)

\(-B=\dfrac{2014}{2015}+\dfrac{2012}{2014.2}=\dfrac{2014^2+1006.2015}{2015.2014}\)

\(B=\dfrac{2014^2+1006.2015}{-2015.2014}\)

3 tháng 3 2018

bài 2 câu c

4C =1-1/45=44/45suy ra C=11/45

3 tháng 3 2018

Bài 1:

a)\(\dfrac{10^8+1}{10^9+1}\)\(\dfrac{10^9+1}{10^{10}+1}\)

b)\(\dfrac{5^{12}+1}{5^{13}+1}\)\(\dfrac{5^{11}+1}{5^{12}+1}\)

11 tháng 4 2017

Bài 1)

Ta có:

A = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)

A < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)

A < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)

A < \(1-\dfrac{1}{8}\) = \(\dfrac{7}{8}\) < 1

Vậy A < 1

12 tháng 4 2017

Bài 2)

Ta thấy:

\(\dfrac{2011}{2012+2013}< \dfrac{2011}{2012};\dfrac{2012}{2012+2013}< \dfrac{2012}{2013}\)

\(\Rightarrow\) \(\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}< \dfrac{2011}{2012}+\dfrac{2012}{2013}\)

\(\Rightarrow\) \(\dfrac{2011+2012}{2012+2013}< \dfrac{2011}{2012}+\dfrac{2012}{2013}\)

\(\Rightarrow\) A < B

Bài 3)

Ta có:

B = \(\left(1-\dfrac{1}{1}\right)\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)......\left(1-\dfrac{1}{20}\right)\)

= \(0.\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)......\left(1-\dfrac{1}{20}\right)\)

= 0

Bài 3)

Ta có:

A = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\)

\(\Rightarrow\) 2A = \(2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\right)\)

\(\Rightarrow\) 2A = \(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2011}}\)

\(\Rightarrow\) 2A - A = \(\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2011}}\right)\)-\(\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\right)\)

\(\Rightarrow\) A = 2 - \(\dfrac{1}{2^{2012}}\) = \(\dfrac{2^{2013}-1}{2^{2012}}\)

Bài 5)

\(\pi\) + 5 \(⋮\) \(\pi\) - 2

\(\Leftrightarrow\) \(\pi\) - 2 + 7 \(⋮\) \(\pi\) - 2

\(\Leftrightarrow\) 7 \(⋮\) \(\pi\) - 2 (vì \(\pi\) - 2 \(⋮\) \(\pi\) - 2)

\(\Leftrightarrow\) \(\pi\) - 2 \(\in\) Ư(7)

\(\Leftrightarrow\) \(\pi\) - 2 \(\in\) \(\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow\) \(\pi\) \(\in\) \(\left\{1;3;-5;9\right\}\)

19 tháng 3 2017

D=\(\frac{2011^{2013}+1}{2011^{2014}+1}\)

 <\(\frac{2011^{2013}+1+2010}{2011^{2014}+1+2010}\)

 <\(\frac{2011^{2013}+2011}{2011^{2014}+2011}\)

<\(\frac{2011\left(2011^{2012}+1\right)}{2011\left(2011^{2013}+1\right)}\)

 <\(\frac{2011^{2012}+1}{2011^{2013}+1}\)

<C

Vậy C>D

19 tháng 3 2017

C>D nhé

14 tháng 1 2018

Mấy bài dễ u tự giải quyết nha

3) \(\dfrac{2013}{2014}+\dfrac{2014}{2015}+\dfrac{2015}{2013}\)

\(=\left(1-\dfrac{1}{2014}\right)+\left(1-\dfrac{1}{2015}\right)+\left(1+\dfrac{2}{2013}\right)\)

\(=3+\dfrac{2}{2013}-\dfrac{1}{2014}-\dfrac{1}{2015}\)

\(=3+\left(\dfrac{1}{2013}-\dfrac{1}{2014}\right)+\left(\dfrac{1}{2013}-\dfrac{1}{2015}\right)>3\)

2 tháng 2 2018

i don't care

31 tháng 7 2017

1.Tính hợp lý:

a. 1152 - (374 + 1152) + (374 - 65) = 1152 - 374 - 1152 + 374 - 65 = ( 1152 - 1152 ) + ( -65) + ( 374 - 374 ) = 0 + ( - 65) + 0 = -65

30 tháng 7 2017

Bài 1 : Tính hợp lý : c. \(\dfrac{11.3^{22}.3^7-9^{15}}{\left(2.3^{14}\right)^2}\) = \(\dfrac{11.3^{29}-3^{30}}{2^2.3^{28}}\) = \(\dfrac{3^{29}.\left(11-3\right)}{2^2.3^{28}}\) = \(\dfrac{3^{29}.2^3}{2^2.3^{28}}\) = 6