Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOAD và ΔOBC có
OA=OB
\(\widehat{AOD}=\widehat{BOC}\)
OD=OC
Do đó: ΔOAD=ΔOBC
b: Xét tứ giác ACBD có
O là trung điểm của AB
O là trung điểm của CD
Do đó: ACBD là hình bình hành
Suy ra: AC//BD
c: Ta có: OH\(\perp\)AC
AC//BD
DO đó: OH\(\perp\)BD
d: Xét tứ giác CMDN có
DM//CN
DM=CN
Do đó: CMDN là hình bình hành
Suy ra: Hai đường chéo CD và MN cắt nhau tại trung điểm của mỗi đường
=>O là trung điểm của MN
hay M,O,N thẳng hàng
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
a) áp dụng định lí py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
=> 225 = 81 + 144 = 225
=> tam giác ABC là tam giác vuông
trong tam giác vuông ABC có \(\widehat{A}\)> \(\widehat{B}\)>\(\widehat{C}\)(15cm>12cm > 9cm) vì góc đối diện vs cạnh lớn hơn là góc lớn hơn
vậy \(\widehat{A}\)>\(\widehat{B}\)>\(\widehat{C}\)
b) xem lại đề bài
9cm A B C 12cm 15cm D
tự kẻ hình nha
a) vì tam giác BEC vuông tại E=> EBC=90 độ-ECB
vì ECB+BCD= 90 độ( AC vuông góc với CD)
=> BCD=90 độ-ECB
xét tam giác HMB và tam giác CMD có
MB=MC(gt)
HMB=DMC(đối đỉnh)
HBM=MCD(= 90 độ-ECB)
=> tam giác HMB= tam giác DMC(gcg)
=> BH=CD (hai cạnh tương ứng)
b) từ tam giác HMB= tam giác DMC=> HM=DM( hai cạnh tương ứng)
=> M là trung điểm của HD
c) hình như nhầm một chút rồi, phải là AM,HO,DI giao nhau
vì M là trung điểm của HD=> AM là trung tuyến
vì O là trung điểm của AD=> HO là trung tuyến
vì I là trung điểm của AH=> DI là trung tuyến
=> AM, HO,DI giao nhau tại một điểm ( trong tam giác, 3 đường trung tuyến giao nhau tại một điểm)
B D A C O
Xét \(\Delta OAD\) và \(\Delta OBC\) có
OA=OB (trung điểm )
\(\widehat{AOD}=\widehat{BOC}\) (đối đỉnh)
OC=OD (trung điểm)
\(\Rightarrow\Delta OAD=\Delta OBC\left(c.g.c\right)\)
b, Có \(\Delta OAD=\Delta OBC\)(câu a)
\(\Rightarrow\widehat{DAB}=\widehat{CBO}\)( 2 góc t.ứng)
Mà 2 góc này ở vị trí so le trong nên AC//BD