Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xin lỗi vì ko giúp đc zì !!! Tại ....... e ms lớp 6 à !!!!
a) \(100x^2-\left(x^2+25\right)^2\)
\(=\left(10x-x^2-25\right)\left(10x+x^2+25\right)\)( Áp dụng hằng đẳng thức số 3 )
b) ko khai phân tích dc bạn ạ
c)
b) \(3x\left(x-1\right)^2-2x\left(x+3\right)\left(x-3\right)+4x\left(x-4\right)\)
\(=3x\left(x^2-2x+1\right)-2x\left(x^2-9\right)+4x^2-16x=3x^3-6x^2+3x-2x^3+18x+4x^2-16x\)\(=x^3-2x^2+5x\)
c) \(2\left(2x+5\right)^2-3\left(4x+1\right)\left(1-4x\right)=2\left(4x^2+20x+25\right)+3\left(16x^2-1\right)\)
\(=8x^2+40x+50+48x^2-3=56x^2+40x+47\)
d) \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)=x\left(x^2-16\right)-x^4+1=x^3-x^4-16x+1\)
e) \(\left(y-3\right)\left(y+3\right)\left(y^2+9\right)-\left(y^2+2\right)\left(y^2-2\right)=\left(y^2-9\right)\left(y^2+9\right)-y^4+4=y^4-81-y^2+4=-77\)
Bài 1: Khai triển các hằng đẳng thức
a) ( x - 3 )( x2 + 3x + 9 )
= x3 - 33
= x3 - 27
b) ( 5x - 1 )( 1 + 5x + 25x2 )
= ( 5x - 1 )(25x2 + 5x + 1 )
= (5x)3 - 1
= 125x3 - 1
c) ( x2 - 1 ) ( x4 + x2 + 1 )
= (x2)3 - 1
= x6 - 1
a) ( x - 3 )( x2 + 3x + 9 )=x3-9
b) ( 5x - 1 ) ( 1 + 5x + 25x2 )=125x3-1
c) ( x2 - 1 ) ( x4 + x2 + 1 )=x6-1
\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2=\left(x-y-x-y\right)^2-\left(2x\right)^2=\left(-2y\right)^2-\left(2x\right)^2\)
\(=\left(2y-2x\right)\left(2y+2x\right)=2\left(y-x\right)2\left(y+x\right)=4\left(x+y\right)\left(y-x\right)\)
\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)
\(x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x+2y-1\right)\left(x-2y-1\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)
Đặt \(x^2+7x+10=t\), ta có:
\(t\left(t+2\right)-8=t^2+2t-8=t^2-2t+4t-8=t\left(t-2\right)+4\left(t-2\right)=\left(t-2\right)\left(t+4\right)\)
\(=\left(x^2+7x+10+4\right)\left(x^2+7x+10-2\right)=\left(x^2+7x+14\right)\left(x^2+7x-8\right)\)
b) \(\left(x-1\right)^3-\left(x-1\right)^3-6\left(x+1\right)\left(x-1\right)\)
\(=\left(x^3+3x^2+3x+1\right)-\left(x^3-3x^2+3x-1\right)-6\left(x^2-1\right)\)
\(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6\)
\(=6x^2-6x^2+1+1+6\)
\(=8\)
Vậy biểu thức trên k phụ thuộc vào biến.
Bài 1:
a) (x-3)\(^2\)-(x+1)(x-4)=0
<=>x\(^2\)-6x+9-x\(^2\)+4x-x+4=0
<=>-3x+13=0
<=>3x=13
<=> x=\(\dfrac{13}{3}\)
b)x\(^2\)-25=3x+15
<=>(x+5)(x-5)=3(x+5)
<=>(x+5)(x-5)-3(x+5)=0
<=>(x+5)[(x-5)-3]=0
<=>(x+5)(x-8)=0
<=> x+5=0 hoặc x-8=0
*x+5=0 *x-8=0
<=>x=-5 <=>x=8
c)x\(^2\)-10x+25=2(x-5)
<=>(x-5)\(^2\)=2(x-5)
<=>(x-5)\(^2\)-2(x-5)=0
<=>(x-5)[(x-5)-2]=0
<=>(x-5)(x-7)=0
<=>x-5=0 hoặc x-7=0
* x-5=0 *x-7=0
<=>x=5 <=>x=7
d)4x\(^2\)-12x+9=(1-x)\(^2\)
<=>4x\(^2\)-12x+9=1-2x+x\(^2\)
<=>4x\(^2\)-12x+9-1+2x-x\(^2\)=0
<=>3x\(^2\)-10x+9=0
Câu d đến đây mik chịu...
d)
\(4x^2-12x+9=\left(1-x\right)^2\)
\(\Leftrightarrow4x^2-12x+9-1+2x-x^2=0\)
\(\Leftrightarrow3x^2-10x+8=0\)
\(\Leftrightarrow3x^2-6x-4x+8=0\)
\(\Leftrightarrow3x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{4}{3}\end{matrix}\right.\)
Bài 1: Thực hiện phép tính
a) 3x(2x2 - 5x + 9) = \(6x^3-15x^2+27x\)
b) 5x(x2-xy+1) = \(5x^3-5xy+5x\)
c) -2/3x2y(3xy-x2+y) = \(-2x^3y^2+\dfrac{2}{3}x^4y-\dfrac{2}{3}x^2y^2\)
2) Thực hiện phép tính
a) (5x-2y) (x2-xy+1) = \(5x^3+5x-7y-2x^3y+2xy^2\)
b) (x+3y)(x2-2xy+y) = \(x^3-x^2y+xy+6xy^2+y^2\)
c) (3x-5y) (4x+ 7y) = \(12x^2-xy-35y^2\)
Bài 3: Rút gọn các biểu thức sau(bằng cách khai triển hằng đẳng thức):
a) (x+y)2+(x-y)2
= \(x^2+2xy+y^2+x^2-2xy+y^2\)
= \(\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)
= \(2x^2+2y^2=2\left(x^2+y^2\right)\)
b) (x+2)(x-2)-(x-3)(x+1)
= \(x^2-4\) - \(\left(x^2-2x-3\right)\)= \(x^2-4-x^2+2x+3\)
= \(\left(x^2-x^2\right)+2x+\left(-4+3\right)\)=\(2x-1\)
c) (x-2)(x+2)-(x-2)2
=>\(x^2-4-\left(x^2-2.x.2+2^2\right)=x^2-4-x^2-4x+4=\left(x^2-x^2\right)+\left(-4+4\right)-4x=-4x\)
d) (2x+y)(4x2-2xy+y2)-(2x-y)(4x2+2xy+y2)
= \(8x^3+y^3-\left(8x^3-y^3\right)\)
= \(8x^3+y^3-8x^3+y^3\)
= \(\left(8x^3-8x^3\right)+\left(y^3+y^3\right)\)= \(2y^3\)
1) Ta có: \(\left(x+y+2\right)^2\)
\(=x^2+y^2+4+2xy+2\cdot x\cdot2+2\cdot y\cdot2\)
\(=x^2+y^2+4+2xy+4x+4y\)
2) Ta có: \(\left(x-2y+3\right)^2\)
\(=x^2+4y^2+9-2\cdot x\cdot2y+2\cdot x\cdot3-2\cdot2y\cdot3\)
\(=x^2+4y^2+9-4xy+6x-12y\)
3) Ta có: \(\left(x^2-y-4\right)^2\)
\(=x^4+y^2+16+2\cdot x^2\cdot\left(-y\right)+2\cdot x^2\cdot\left(-4\right)+2\cdot\left(-y\right)\cdot\left(-4\right)\)
\(=x^4+y^2+16-2x^2y-8x^2+8y\)
4) Ta có: \(100x^2-\left(x^2+25\right)\)
\(=100x^2-x^2-25\)
\(=99x^2-25\)
5) Ta có: \(\left(x-3\right)^2-16\)
\(=x^2-6x+9-16\)
\(=x^2-6x-7\)
Cảm ơn nhiều nha bạn
Chân thành cảm ơn